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have acted as measures of sovereign default risk by the participants of the financial

markets. The variability of CDS levels among countries and the tendency of some

of them to move together, raised fears of contagion and questions as to the existence

of systemic risk among them. This paper proposes a novel framework identifying

sovereign systemic risk zones. We will first explore the cross-dynamics of sovereign

CDS in terms of time-changing contagion measures based on copulas. We will then

assemble these measures together with country-specific fundamentals producing im-

portant leading indicators and identification of main sovereign systemic risk regimes

expressed as regions in CDS levels. What is novel about our modelling perspective

is that we examine whether contagion, after controlling with specific fundamentals,

affects CDS levels. The model concludes with three systemic risk zones. A first safe

zone has a low unemployment rate and moderate Debt/GDP ratio. A second risky

zone has high unemployment rate or high Debt/GDP ratio. Lastly, the third zone, the

high risk zone, has a high unemployment rate, high Debt/GDP ratio and significant

sovereign contagion.

I. Introduction

Sovereign credit default swap spreads (CDS) were gradually narrowing from April to Septem-

ber 2009 in response to the taxpayer bailout that subsidised the risk. Yet, the deterioration

of bank debts resulted in higher levels of sovereign risk from November 2009, shortly after

the election of the new Greek government and the revision that more than doubled Greek

public sector deficit. On April 22, 2010, the closing price of the 5-yr Greek sovereign CDS
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exceeded the 500 bps and its trading status changed to upfront, as the protection buyer had

to pay a portion of the notional amount insured besides the coupon, implying that the sell-

ers of default protection are demanding a deposit at the inception of the trade to cover the

countrys deteriorating credit risk. The CDS of Italy, Spain, Portugal and Ireland behaved

similarly to that of Greece. On August 2010, when the risk of Irish debt was very high, there

was also a rising trend in the CDS of Greece, Italy, Spain and Portugal. During that period,

academics, bankers, regulators and policymakers started considering systemic sovereign risk

as a novel risk entity. It is now broadly believed that what previously appeared as a homo-

geneous and safe macro area in terms of sovereign risks, seems in fact to generate regime

shifts in credit spreads, with large changes in the eco-financial systems and severe impacts

on economies. The purpose of our study is to identify these regime shifts and provide a

sovereign risk stratification that can be identified by country fundamentals and sovereign

contagion measures.

Detecting sovereign systemic risk zones is of fundamental financial importance from a

public policy perspective. The early detection and causal identification of such phenomena

may provide valuable early warning signals to countries moving towards dangerous risk

paths. Moreover, it is of primary interest to provide effective risk mapping in which country-

specific fundamentals are united with contagion-based measures, thereby assembling a series

of leading indicators that could signal impending sovereign systemic risk abnormalities.

Much of the literature on the European sovereign debt crisis has been focused on co-

movements and major drivers in bond spreads (De Santis (2014), Beetsma, Giuliodori, De

Jong, and Widijanto (2013), Favero (2013)); in sovereign credit default swaps (Longstaff,

3



Pan, Pedersen, and Singleton (2011), Kalbaskaa and Gatkowski (2012), Aizenman, Hutchi-

son, and Jinjarak (2013)); in spillover effects and feedback loop between European debt

crisis and the financial sector (Acharya, Pedersen, Philippon, and Richardson (2010), Alter

and Schler (2012), De Bruyckerea, Gerhardt, Schepens, and Vander Vennet (2013)); and in

sovereign risk contagion among Eurozone countries (Arezki, Candelon, and Sy (2011), Beirne

and Fratzscher (2013), Broto and Perez-Quiros (2013), Caporin, Pelizzon, Ravazzolo, and

Rigobon (2013), Mink and De Haan (2013)).

Recently, few studies have examined the sovereign systemic risk in the Eurozone. Re-

boredo and Ugolini (2015) studied systemic risk in European sovereign debt markets before

and after the onset of the Greek debt crisis, using the conditional value-at-risk measure.

Their results provided evidence that while the systemic impact of the Greek debt crisis was

not so severe for non-crisis countries, systemic risk instead increased for countries in crisis.

Ang and Longstaff (2013) explored systemic sovereign credit risk in the US and Europe

using a multifactor affine framework. Their findings indicated strong heterogeneity among

US and European issuers in their sensitivity to systemic risk and considerable evidence on

the key role assumed by financial market variables. Manzo and Picca (2014) pointed out

that while sovereign systemic risk has a large and persistent impact on the banking systemic

risk, systemic banking risk has a smaller, transitory impact on systemic sovereign risk. Fi-

nally, another strand of the literature which is more related to our study is concerned with

changes in regimes occurring in the CDS dynamics. Caceres, Guzzo and Segoviano (2010)

analysed the reasons underlying the rising spreads during European crisis and argued that

while during the early period of the crisis the main cause was risk aversion, in the later
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stages country-specific factors such as public debt and budget deficit played a primary role

in the sharp rise in sovereign spreads.

Our study explores the relationship between systemic sovereign credit risk for Greece, Ire-

land, Italy, Portugal and Spain (hereafter GIIPS), France and Germany. We have used daily

quotes of the 5-yr sovereign CDS and leading macroeconomic country-specific indicators. We

have complemented the literature on sovereign systemic risk through the following modelling

scenario: firstly, we explored the cross-dynamics of sovereign CDS spreads in terms of time-

changing contagion measures based on copulas. We then assembled these measures together

with country-specific fundamentals producing important leading indicators and leading to

identification of the main sovereign systemic risk regimes expressed as regions in CDS levels.

What is novel about our perspective is that we examine whether contagion, after control-

ling with specific fundamentals, affects CDS levels. Such an approach, using a proxy of

dependence as a predictor, has never been investigated in the financial literature.

A key aspect of our analysis is that we have employed nonparametric statistical modelling

tools with inferential procedures based on ensemble learning. Nonparametric modelling is

needed when highly complex stochastic systems are analysed, as parametric models fail to

deal adequately with the high dimensional nonlinearities presented in the data. Moreover,

our statistical inferences are based on ensemble learning, expressed via either Bayesian model

averaging or bootstrap aggregating (bagging). We therefore adopt this modern, popular

methodology to strengthen inferences by combining a number of statistical models, rather

than just one.

We measured the contagion between CDS levels by employing a rich Bayesian model
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averaging strategy in which various copula specifications that are allowed to change in time

produce a nonlinear dependency measurement expressed as a posterior mean of Kendall’s

τ . The time changing process of copula specifications is based on thresholds which have un-

known locations and a-priori unknown numbers. The resulting measures are therefore highly

nonlinear, as they have been produced as averages across models with different copulas, a dif-

ferent number of thresholds and different threshold locations. Inference is achieved through

a population- based, reversible-jump MCMC algorithm. In a second stage, we employed re-

gression trees to detect the most important leading indicators for each country and identify

the main sovereign systemic risk regimes. The procedure approximates the sovereign risk

dynamics as a union of piecewise linear functions, where observations are grouped through

multidimensional data splits. Inference is based on random forests, a bootstrap aggregating

ensemble meta-algorithm which has turned out to be a very valuable inference method in

regression trees literature when the size of the tree is large.

The statistical analysis provides evidence for three systemic risk zones.The safe zone is

characterised by a low unemployment rate and moderate Debt/GDP ratio, the risky zone has

a high unemployment rate or high Debt/GDP ratio, and the high risky zone is characterised

by a high unemployment rate, high Debt/GDP ratio and significant sovereign dependency.

The rest of the paper proceeds as follows. Section II describes our data. Section III

provides detailed information on our statistical procedures, the results and our inference

methodology. We present our results in Section IV and conclude with a brief discussion in

Section V.
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II. Data

We measured pairwise sovereign risk using 1505 daily quotes, over the period from 1 January

2008 to 7 October 2013, of the 5-yr sovereign CDS for GIIPS. For the Greek 5-yr CDSonly

1414 quotes were available. We also used the sovereign US 5-yr CDS CDS as a proxy for

the US sovereign risk. The sovereign CDS are insurance-like contracts used to protect in-

vestors against losses on sovereign debt and are typically more liquid than the corresponding

sovereign bonds (Longstaff, Pan, Pedersen, and Singleton (2011)). The proxies for esti-

mating interconnections between each Euro sovereign CDS and financial intermediaries are

the US Banks 5-yr CDS index, the Euro Other Financials 5-yr CDS index and US Other

Financials 5-yr CDS. Following Augustin (2014), we considered macroeconomic factors in

order to investigate their influence on sovereign CDS levels. These are the Debt/GDP ratio,

exports/GDP ratio, GDP growth rate, industrial production, inflation and the unemployment

rate, chosen for each of the countries in our dataset. Since their frequency is different from

that of the CDS data, we repeated the same value until their new release. The sovereign CDS

data were collected from Markit, the CDS indices from Thomson Reuters Datastream and

the macroeconomic data from Eurostat. A full description of the indices and macroeconomic

variables can be found in the Appendix.
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III. Models

A. A flexible copula model for dependency

Arakelian and Dellaportas (2012) proposed a flexible threshold model estimating bivariate

copulas that change over time. Their work is based on the assumption that in different

time periods, separated by thresholds, different volatilities and copula formulations can

adequately explain the dependency between two financial assets. By assuming that the

number and location of thresholds are unknown and need to be estimated, they created

a model formulation consisting of all models with different volatilities, copula functions,

number of thresholds and threshold locations. A reversible-jump MCMC algorithm was

proposed which obtained samples from the posterior density of these models, and a Bayesian

model-averaging estimation approach constructed a posterior density of Kendall’s τ (Kendall

(1938), Joe (1997), Nelsen (1999)), marginalised over all models and parameters within each

model. Arakelian and Dellaportas (2012) proposed the use of the posterior mean of this

density as a measure of the dependency of two assets. Their empirical study explained

interesting contagion effects in the Asian and Mexican crises.

We have adopted the same model formulation and influential procedure here to provide

a measurement of dependency between Euro sovereign CDS. There is only one difference

from the implementation proposed by Arakelian and Dellaportas (2012), which we will now

describe in detail. When we applied the reversible-jump MCMC algorithm to some CDS

pairs, we noticed that the mixing of the Markov chain over the product space of models

and parameters was not satisfactory. We therefore adopted the population based simulation
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suggested by Jasra, Stephens and Holmes (2007). This method generates L parallel-sampled

auxiliary Markov chains with target densities πl ∝ πζl , where π denotes the posterior density

from which we need to obtain samples and ζl are ordered parameters 0 < ζl < ζl−1 < . . . <

ζ1 < 1. The densities πl serve as independent Metropolis-Hasting proposal densities for the

main chain with target density π. At each iteration, one auxiliary density πl is chosen at

random and used together with the current sampled point of l at the usual acceptance ratio

of the main chain. In the terminology of Jasra, Stephens and Holmes (2007), this is an

exchange move in the population reversible-jump algorithm. We used the strategy proposed

by Jasra, Stephens and Holmes (2007), whereby five auxiliary chains are chosen with values

of ζl being updated as a linear function of their past value and the acceptance rate of the

process calculated within the burn-in period. We developed a MATLAB code to implement

the method. The MCMC was computationally intensive as it took 96 hours to converge

when run on an Intel core i7, 8GB RAM computer. Convergence plots and specific details

of the MCMC algorithm can be found in the Internet Appendix.

B. Regression Trees and Random Forest

Regression trees are nonparametric models constructed by recursively partitioning a data

set with the values of its predictor variables with the objective of optimally predicting a

response variable which can be continuous. Regression trees uncover forms of nonlinearity

and identify multiple data regimes from a set of predictor variables. This approach has

been applied in the context of financial crisis studies (for example, see Manasse and Roubini

(2009), Savona and Vezzoli (2015)) to study the complex and nonlinear nature of financial
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crises as well as to create an early warning system with the aim of signalling impending

crises when preselected leading economic indicators exceed specific thresholds.

Mathematically, having data consisting of R inputs and a continuous response, Y , for

each of N observations, the algorithm needs to decide on the splitting variables, the split

points, and the topology (shape) of the tree. To do this, the algorithm partitions the input

space S, namely the set of all possible values of X (X ∈ S), into disjoint regions Tk with

k = 1, 2, · · · , K, so that S ⊆
⋃K
k=1 Tk. The underlying response-predictor structure f(X) is

represented by the piecewise constant functions gk fitted over the input subspace:

f(X) =
K∑
k=1

gkI(X ∈ Tk). (1)

The sum of squares
∑

(Y −f(X))2 is used as the criterion of minimization (Hastie, Tibshirani

and Friedman (2009)), thus obtaining a mapping of the response variable which is optimal

for the number of final clusters, the best predictors and corresponding thresholds, and the

predictions for the Y variable.

Regression trees are conceived with the aim of improving out-of-sample predictability. To

achieve this, they are estimated through a cross-validation estimation procedure whereby the

sample is partitioned into subsets, so that the analysis is initially performed on a single subset

(the training sets), whereas the other subsets are retained for subsequent use in confirming

and validating the initial analysis (the validation or testing sets). We adopted an ensemble

learning inference procedure to strengthen our inferences: the random forest. This algorithm

is a collection of regression trees using different combinations of variables and samples, so that

predictions are more stable and less prone to estimation errors. Details of the implementation
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of the random forest algorithm can be found in Breiman (2001). In summary, the idea is

that the random forest algorithm combines regression trees built using bootstrap samples.

Instead of splitting each node by using the best split among all variables, the random forest

splits each node by picking out the best from a subset of predictors randomly chosen at that

node, see Breiman (2001, 2003). We used the R softwares package “tree” to implement the

regression trees.

IV. Results

A. Copula-based dependencies

We applied our threshold copula model to compute pairwise correlations in the form of

Kendall’s τ dependencies to daily differences in Euro sovereign CDS and CDS indices. We

initiated our Markov chain with a model with zero breaks and, after a burn-in period of

106 iterations, we obtained our Markov chain output by collecting the next of 2.5 × 105

samples. Figure 1 reports the model-averaged posterior mean of Kendall’s τ for all pairwise

dependencies of the seven Euro sovereign CDS. Some of the preliminary findings are partic-

ularly interesting. In all the sub-figures of Figure 1,it is clear that a first jump in Kendall’s

τ occurred in mid-2008 little after the collapse of Bear Stearns, followed by a structural

change in the dependence structures around the end of the same year with the collapse

of Lehman Brothers. The period from 2009 to the first quarter of 2011 was characterised

by strong contagion, with Kendall’s τ around 0.6 in median, with low dispersion across all

pairwise dependencies. After that, the overall Euro sovereign contagion seemed to decrease,
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as shown by the cross-dispersion, which increased until the end of the period, when the

median Kendall’s τ is around 0.4, close to the same values exhibited early in 2008 but with

higher cross dispersion. Figure 2 summarises such dynamics, depicting the cross-median,

the minimum, the maximum and the cross-standard deviation. Figure 3 shows trends in US

sovereign dependencies that are similar to those in Figure 1, however with very low values

starting from the end of 2011. Interconnections with CDS indices show cyclical tendencies

with significant spikes in dependencies with the banking sector both in Europe and the US

(Figure 4) occurring in 2008, 2009 and 2010, and a rebound in 2012. For the Euro Other

Financials 5-yr CDS index (Figure 4), the patterns are quite similar to sovereign-banking

dependencies, while the US Other Financials 5-yr CDS index shows a downward trend from

the peak in 2008 to the end of the period, with the exception of Greece, which presents very

high values from 2011 onwards.

B. Sovereign risk and CDS dependencies

We first inspected how the level of each sovereign CDS is affected by each pair of Kendall’s τ

dynamics, in order to understand which of the pairwise dependencies exert the higher impact

on sovereign risk dynamics. To avoid reverse causality among all pairwise Kendall’s τ to be

used as covariates, we excluded those dependencies that involved countries whose sovereign

CDS dynamics are investigated. We ran the random forest algorithm computationally and

obtained the relative importance measures attributed to all single Kendall’s τ by all countries.

These measures are provided by the random forest algorithm as a natural way of ranking

the importance of the variables in a regression tree setup; for details, see Breiman (2001,
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2003). Figure 5 depicts the box plots of the variable importance measure (VIM), expressed

on a scale 1-100, of each pairwise dependence. The dependencies between Italy and France,

Spain and Portugal and Spain and Italy seem important in all CDS levels, implying that

they are key elements of systemic risk in the Eurozone.

When considering the sovereign CDS level dynamics as a whole, the results are in line

with the recent findings of Gonzalez-Hermosillo and Johnson (2014), in that Spain and Italy

show considerable co-dependence in explaining each other’s volatility, while Greece assumes

a scant role as primary contagion channel. Our results indeed indicate that on average,

the contribution of Greece only appears when considering co-evolution with Germany, al-

though its importance is modest when compared with other dependencies (see Figure 5).

As discussed by Gonzalez-Hermosillo and Johnson (2014), the mechanisms underlying the

contagion propagation can follow very complex channels that are not related only to pure

sovereign risk interconnections. Contagion can arise because of adverse market price dynam-

ics, adverse cycles of worsening liquidity problems and connections with the financial sector

(banks and other financial intermediaries). The challenging issue separating all these central

factors and then understanding all possible risk patterns and corresponding triggers. This is

exactly the theme of the next section, which is devoted to detecting systemic sovereign risk

zones, shedding light on their deep-rooted causes, dynamics and risk signals.

C. Risk mapping

It is of particular interest to look over all the data simultaneously in a panel-data regression

tree approach. Our response variable was all the European sovereign CDS levels stacked
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together on a 10444×1 dimensions response, variable Y, and used all Kendall’s τ estimates as

covariates, taking care again to avoid reverse causality. The dimension of the predictor matrix

was 10444 × 21. We therefore stratified the systemic sovereign risk using country-specific

fundamentals and contagion-based measures and attributed the time-varying importance

to all variables, thereby ranking all indicators over time. The final regression tree, which

we assembled using the entire panel data, allowed a clear understanding of the different

risk regimes which are endogenously detected by the same algorithm. Note that no a-priori

knowledge about the timing of the shifts was assumed. The concept of regime and connected

changes was used here as a spatio-temporal risk stratification, leading to a number of final

risk zones that include important insights in terms of their time-varying composition and

the values assumed by the leading variables selected by the algorithm. To give an overview

of the distributions taken on by all variables within each final node and not only of those

selected by the regression tree, we hierarchically clustered the standardised values assigned

to each variable within each final node and arranged them in ascending form, based on their

ranking obtained through their arithmetic mean; see Figure 6.

Next, the analysis involved regression trees and random forest by using the level of the

daily CDS for all seven Euro countries as dependent variables and the contagion-based mea-

sures and country-specific fundamentals selected based on the more relevant academic studies

on this subject as covariates; see Section I. Specifically, the set of possible leading indicators

contained fourteen variables distinguishing between contagion-based and fundamental-based

measures, as follows. The contagion-based measures, namely nonparametric daily pair-

wise dependencies computed through Kendall’s τ for each of the seven sovereign CDS: the
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Kendall’s τ between France and Germany (τFr,Ger) representing the strength and the di-

rection of association that exists between core countries; the Kendall’s τ between all the

pairs of GIIPS (τGIIPS), capturing the strength and direction of association between the

peripheral countries; the Kendall’s τ between a single and the rest of the group of European

countries (τEuroSvgn,EuroSvgn) representing a synthesis of the European dependencies from

the perspective of a single country; the Kendall’s τ between a single sovereign CDS and the

Euro Banks 5-yr CDS index (τsvgn,EUBanks) assessing the sovereign and European banking

system loop dynamics; the Kendall’s τ between a single sovereign CDS and the Euro Other

Financials 5-yr CDS index (τsvgn,EUOther), the Kendall’s τ between a single sovereign CDS

and the sovereign US 5-yr CDS (τsvgn,US) assessing the connections with the US sovereign

risk dynamics; the Kendall’s τ between a single sovereign CDS and the US Banks 5-yr

CDS index (τsvgn,USBanks) assessing the sovereign-US banking system loop dynamics; the

Kendall’s τ between a single sovereign CDS and the US Other Financials 5-yr CDS index

(τsvgn,USOther). The country-specific fundamentals were the Debt/GDP ratio, exports/GDP

ratio, GDP growth, industrial production, inflation and the unemployment rate.

i. Inside the risk zones

Figure 6 shows the resulting regression tree computed using the overall panel data as a

whole. The final model is based on eight variables out of fourteen potential leading indica-

tors (eight contagion-based variables and six country-specific fundamentals): the Kendall’s

τ between the single sovereign CDS and GIIPS’s CDS (τsvgn,GIIPS); the Kendall’s τ be-

tween the single sovereign CDS and the rest of the Euro sovereign CDS (τsvgn,EuroSvgn); the
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Kendall’s τ between the single sovereign CDS and the Euro Other Financials 5-yr CDS in-

dex (τsvgn,EUOthFin); the Kendall’s τ between the single sovereign CDS and the sovereign US

5-yr CDS (τsvgn,US); the Debt/GDP ratio, GDP growth, inflation and, the unemployment

rate.

Hence, the overall sovereign systemic risk in the Eurozone can be stratified using four

contagion-based variables and four country-specific fundamentals. There are seventeen final

nodes, although the corresponding mean values of the expected CDS level allow us to make

some grouping based on specific risk levels, from low to very high, as explained below. We

inspected each of the seventeen risk regimes from a number of perspectives, such as in terms

of the expected CDS level, the threshold values computed by the algorithms and the time-

varying country composition of each node, looking primarily at the values assumed both by

leading covariates and those that are potentially informative, to come up with a complete

“genetic” mapping of each risk zone.

Based on this thorough analysis, we developed a comprehensive sovereign systemic risk

regimes mapping. There is a simple way of reading the risk paths shown in the regression

tree: by starting from the top node (in our case τGIIPS) and using the corresponding splitting

rule (≤ or >), we check if the value of the variable within the node agrees with the splitting

rule: if “yes”, the move is to the left, otherwise, it is to the right. Once the next node

is reached, based on a new variable and a new splitting rule, the move is to the left or to

the right. This process leads to the final nodes, where the expected value of the dependent

variable are given.

A notable result we obtained is the discrimination performed by the regression tree
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between two main macro-regions through the τGIIPS indicator (the Kendall’s τ with GIIPS’s

CDS),which is placed at the top of the tree with a threshold value of 0.3167. The two

macro-regions detected based upon the value assumed by such indicator are: (a) a macro

area, called Greek Only Area, corresponding to values of the τGIIPS which is placed at the

top of the tree with a threshold value of 0.3167, leading on the right of the tree towards

extremely high risk levels, where the values of expected CDS in each final node range from

1515 bps to 24706 bps; and (b) a macro area, called Euro Systemic Sovereign Risk Area

corresponding to values of the τGIIPS indicator greater than 0.3167, leading to different risk

zones spanning from low (76 bps) to high risk levels (1217 bps).

ii. The Greek Only Area

(a) High sovereign dependency with moderate financial contagion: Unlike the previous risk

zone, here high Kendall’s τ with all Euro sovereign CDS (τEuroSvgn,EuroSvgn) greater

than 0.5209 moves together with Kendall’s of sovereign CDS with the Euro Other

Financials 5-yr CDS index (τsvgn,EUOthFin) less than 0.4606, and inflation rate less

than 1.9%: following this risk path, the expected CDS level is dramatically high and

equal to 24706 bps. The expected sovereign risk tends to be less pervasive when

inflation is greater than the selected threshold, and it currently reaches the level of

7726 bps. Looking at the corresponding heatmaps reported in Figure 7, we noted that

for both final nodes the Kendall’s τ with US Banks 5-yr CDS index is high for both

final nodes, in addition to high values for the unemployment rate and Debt/GDP ratio.

(b) High sovereign dependency with high financial contagion: Unlike the previous risk

17



zone, here high Kendall’s τ with the Euro sovereign CDS (τEuroSvgn,EuroSvgn) moves in

tandem with high Kendall’s τ of sovereign CDS with the Euro Other Financials 5-yr

CDS index (τsvgn,EUOthFin) and GDP growth with inflation lead to different sovereign

risk values: when GDP growth is higher than 6.85%, the expected CDS is 14888 bps;

instead when the GDP growth is below 6.85%, an upward moving inflation (more than

2.95%) leads to 2156 bps against 9328 bps, which is the expected CDS value when

inflation is low (and less than 2.95%). Heatmaps for the three final nodes (see Figure

7) confirm the high financial contagion by showing high values for dependencies with

US and Euro Other Financials 5-yr CDS index as well as US Banks 5-yr CDS index.

(c) Contained sovereign dependency: this risk zone is the Kendall’s τ of the Euro sovereign

CDS less than 0.5209. The final nodes ultimately depend on inflation, for which

deflation states seem to contain CDS turbulence, as the expected CDS level is 1515

bps when inflation is less than -0.25%, whereas having inflation that is greater than the

selected threshold leads to a slightly higher level of sovereign risk. The corresponding

heatmap highlights high values for unemployment rate and Debt/GDP ratio.

iii. The Euro systemic sovereign risk area

This macro area includes many risk regimes that together well stratify the Euro systemic

sovereign risk area for all the seven countries over the entire period, but clearly with the

exception of Greece during the period from June 2011 to October 2013. As discussed above,

this macro area is identified by values of the median Kendall’s τ with GIIPS greater than

0.3167. Next, based on other leading indicators selected by the regression tree, the splits
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that follow lead to 10 final nodes that can be grouped into three main risk zones.

(a) Safe Zone: This regime exhibits low unemployment rate (less than 11.75%) and mod-

erate public indebtedness relative to GDP (Debt/GDP ratio< 119.6%), and expected

CDS level is 76 bps. This is the lower value among all the final nodes and some very

interesting insights can be gained by inspecting the time-varying country composition,

which completely changed as the crisis began to unfold. Figures 8 and 9 report the

country composition and heatmaps, respectively, computed by us on a monthly basis

by observing the CDS values with corresponding country names for each node.

For this safe zone regime, we observed that all seven countries were included in this

cluster from January 2008, and only starting from September 2008, when the Lehman

Brothers collapsed, did non-safe countries begin to leave this regime. The first country

moved to other regimes was Spain in September 2008, followed by Greece in April

2009, Ireland in May 2009, Portugal in May 2010, and Italy in September 2010. Start-

ing from 2011, only France and Germany remained in the safe zone until the end of

the period. These findings confirm the “wake-up call” phenomenon in the Eurozone

(Goldstein (1998), Goldstein, Reinhart, and Kaminsky (2000)), since markets ignored

deteriorating fundamentals during times of non-crisis and became highly sensitive upon

onset of crisis. The novelty of our results is twofold. Firstly, markets became highly

sensitive to Debt/GDP ratio together with unemployment rate, and secondly, related

to the first point, the values signalling an impending change in regime out of the safe

zone are known for such indicators, namely an unemployment rate greater than 11.75%
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or a Debt/GDP ratio greater than 119.6%. In both scenarios, a move towards risky or

high-risk zones is expected.

(b) Risky Zone: this risk regime is characterised by a low unemployment rate with high

Debt/GDP ratio or with a high unemployment rate and includes the following sub-

zones: the low unemployment rate with high Debt/GDP ratio scenario and the high

unemployment rate scenario. In the first scenario, inflation enters the risk stratification

process by splitting between low (less than 3.15%) and moderate (greater than 3.15%)

inflation, leading to an expected CDS level of 219 bps and 445 bps respectively. The

time-varying country compositions (Figure 10) of the two final nodes and the heatmaps

(Figure 11) highlight some further interesting differences in more depth.

The first node, showing an expected CDS value of 219 bps, includes Greece from March

2009 to March 2010, and Italy from September 2010 to September 2011 (excluding

January and February 2011) and October 2012 to January 2013. The corresponding

heatmap shows low values for exports/GDP ratio with high values for contagion-based

measures, specifically the Kendall’s τ with France and Germany and with GIIPS. The

second node, showing an expected CDS value of 445 bps, again includes Greece, from

April to May 2010, and Italy, from September 2011 to October 2012. Looking at

the corresponding heatmaps, we noted high values for the Kendall’s τ with France and

Germany on the one hand, and on the other, low values for Kendall’s τ with of the Euro

sovereign CDS with US Other Financials 5-yr CDS index (τEuroSvgn,USOthFin). In other

words, it seems that the form of contagion that really matters concerns dependency
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with the core countries of the Eurozone - France and Germany - together with high

Debt/GDP ratio and moderate inflation. If we consider these findings together, it is

of particular interest that the first effects on the re-pricing of sovereign risk in Greece,

occurring at the end of 2009 and continuing with the spike of the CDS from April to

May 2010 when Greece applied for financial support, were the same in terms of their

underlying contagion-based and fundamental-based triggers as those for Italy from

September 2010 to January 2013. The second scenario includes three final nodes which

modulate between low (less than 66.45%) and moderate (between 66.45% and 93.65%)

Debt/GDP ratio, and also point to high Debt/GDP ratio with low dependency with

other Eurozone sovereign risks dynamics. In the first sub-scenario, the corresponding

heatmaps display for both nodes (with expected CDS level 160 bps and 370 bps,

respectively) high values for Euro sovereign contagion (Kendall’s τ with GIIPS and

France and Germany) and Euro banking contagion (Kendall’s τ of sovereign CDS with

the Euro Banks 5-yr CDS index, τsvgn,EUBanks). By observing the country composition

over time, we noted that Spain and Ireland were in both nodes, while Portugal was

in the final node only, with moderate Debt/GDP ratio. In the second sub-scenario,

corresponding to the final node with 285 bps as expected sovereign risk level, the

heatmap displays low values for US financial contagion and industrial production,

thereby mixing contagion-based and fundamental-based indicators. This was the case

for Portugal and Italy over the November 2012-October 2013 period (see Figure 10)

which saw high values for Debt/GDP ratio and unemployment rate moving with low

contagion. This explains why the sovereign risk was slightly lower than it was for
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Ireland, Spain, and Portugal, clustered within the node with 370 bps as expected CDS

level: in such a case, moderate public indebtedness was associated with significant

sovereign and banking contagion.

(c) High Risk Zone: the main features of this very dangerous zone (Figure 12), which leads

towards very high sovereign risk levels, are high unemployment rate (greater than

11.75%), together with high Debt/GDP ratio (greater than 93.65%) and significant

sovereign contagion (Kendall’s τ of Euro sovereign CDS greater than 0.4872). Taken

together, these indicators with corresponding red flags signal extreme risk sensitivity,

which is reflected into expected CDS levels spanning from 575 bps to 1217 bps covering

four final nodes. We identified the following two sub-zones based on such a final risk

partition:

(1) The GIIPS contagion scenario: In this scenario the median Kendall’s τ between

GIIPS is greater than 0.4924 and leads towards two final nodes. The first denotes high

dependency with Euro Other Financials 5-yr CDS index and low GDP growth; see

Figure 13. Discontinuously, Greece (May-June 2010), Portugal (January-May 20111

and September-October 2012), Spain (November 2011-October 2012) populated this

node which exhibit 575 bps as expected risk level. The second node which denotes

higher risk, and specifically 842 bps, is similar to the previous one but differs because

of its low dependency with Euro Other Financials 5-yr CDS index (see Figure 13). This

was the case for Greece (from July 2010 to March 2011), Ireland (from April 2011 2 to

1Portugal applied for financial support in April 2011.
2Ireland is already in financial support program since November 2010.
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October 2011), and Portugal (from May to June 2011), as depicted in Figure 12 showing

the country composition over time. (2) The low US-based sovereign dependency : Here,

the two final nodes show significant risk level shift, since the first exhibits 717 bps

and the second 1217 bps. While both nodes are characterized by extremely low (first

node) or low (second node) Kendall’s τ towards the sovereign US 5-yr CDS dynamics,

looking at the corresponding heatmaps (Figure 13), we observed that what probably

reflects higher risk is the Kendall’s τ of sovereign CDS with the US Other Financial

5-yr CDS index (τsvgn,USOthFin). Indeed, the second node includes high values for

Kendall’s τ of sovereign CDS with the with US Other Financials 5-yr CDS index, in

particular for some parts of the final partition (as it is discussed below corresponding

to Greece), while the first node shows low values for this indicator. In fact, this

different dependency towards US Other Financials 5-yr CDS index dynamics arises

when observing the country composition of the two final nodes with corresponding

time series of such a variable. Portugal and Ireland are placed within the node with

expected CDS level at 717 bps, from June to October 2012. During this period both

countries exhibited extremely low values of Kendall’s τ of sovereign CDS with the US

Other Financials 5-yr CDS index (τsvgn,USOthFin) around 0.03. On the other hand,

Greece and Portugal are within the node with 1217 bps as expected CDS level for

the period from March 2011 to June 2012 (Greece: March-June 2011; Portugal: July

2011-June 2012). During this period, the values of Kendall’s τ of sovereign CDS with

the US Other Financials 5-yr CDS index (τsvgn,USOthFin) were on average around 0.16

with a big difference between Greece, that shown an average value of 0.46, and Portugal
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that shown an average of 0.09.

iv. Risk Indicators and their Importance

The risk stratification performed by means of the regression trees analysis gave us the in-

dicators with their thresholds computed over the entire period of January 2008-October

2013, throughout which the different risk zones have been identified. To get a more clear

understanding of the importance assumed by all the fourteen indicators, we ran the random

forest algorithm on a monthly basis and computed the VIM for each variable, thereby ob-

taining a distribution of the corresponding scores, as we reported in box plots in Figure 14,

and their time series in Figure 15. In this way, we better explored the role assumed by all

variables in terms of their impact on systemic sovereign risk dynamics and examined how

contagion-based and country-specific indicators exerted different impacts over time.

Debt/GDP, inflation and GDP growth rate have the highest median among the country-

specific fundamentals, although inflation demonstrates great variability in terms of upper-

lower quartile range as we also observed with their time series, which presents a substantial

drop during the sub-period from June 2011 to March 2012. Unemployment rate seems to be

the less influential indicator both in terms of median, and upper-lower quartiles, which are

lower than other fundamentals looking at the box plot and the relative median value. How-

ever, the corresponding time series further highlights the behaviour of the importance of the

variable over time, since in November 2009, November-December 2010, and from September

2012 until the end of the period, the indicator appears to be an extremely important variable,

presenting near maximum values. This finding also details the results of the final regression
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tree, in which the variable assumed great importance in detecting some of the main systemic

sovereign risk zones. Indeed, the VIM analysis provided evidence of the fact that the un-

employment rate is only relevant in specific time periods. With this analysis, we were able

to explain the complex and nonlinear nature of the systemic sovereign risk, together with

Debt/GDP, inflation and sovereign contagion dependencies. The ranking of the contagion-

based indicators highlighted the great importance assumed by US Other Financials 5-yr

CDS index (τsvgn,USOther) and Euro Other Financials 5-yr CDS index (τsvgn,EUOther), while

Euro Banks 5-yr CDS index (τsvgn,EUBanks) and US Banks 5-yr CDS index (τsvgn,EUBanks)

dependency appear to have a low impact on systemic sovereign risk dynamics. However, the

box plot for Euro Banks 5-yr CDS index dependency highlights some outliers positioned at

the top of the scale, thus demonstrating great impact in some specific periods. This was

clearly the case from March to May 2008 (collapse of Bear Stearns) when the variable as-

sumed the highest VIM value, and from December 2011 to May 2012 (the ECB suspended

use of Greek bonds as collateral in February 2012, and Greece defaulted in March 2012),

with values around and equal to the maximum (see Figure 15). Sovereign dependency shows

increasing importance over time for GIIPS and core countries (France and Germany) as well

as for the US, as we can see in the corresponding time series, which indicates very high

VIM values starting from 2010, namely when the Euro debt crisis erupted with Greek CDS

spikes, followed by those of other GIIPS countries. To examine the importance assumed by

the variables clustered according to contagion and macro fundamental types, we extracted

the first principal component (pc) from the VIM of the first subgroup (pc-contagion) of the

eight contagion-based variables, τFr,Ger, τGIIPS, τEuroSvgn,EuroSvgn, τsvgn,EUBanks, τsvgn,EUOther,
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τsvgn,US, τsvgn,USBanks, τsvgn,USOther, and from the VIM of the second subgroup (pc-macro) of

the six country-specific macro fundamentals, Debt/GDP, exports/GDP ratio, GDP growth,

industrial production, inflation, unemployment rate. The two principal components are re-

ported in Figure 16 and show interesting patterns over time. Specifically, we observed that

contagion-based variables, summarized by pc-contagion, assumed an increasing importance

starting from the third quarter of 2008 (the Lehman Brothers collapse) until the first quarter

of 2011.

In such a period, fundamental-based variables, summarized by pc-macro, assumed an

opposite tendency, with a drop in importance during 2008 (around the collapse of Bears

Stearns) with moderate importance throughout the end of 2009. Afterwards, and specifically

starting from 2010, importance grew progressively with a peak at the end of 2011, before

next showing a large drop in the second quarter of 2012, but quickly returned to high values,

moving in tandem with contagion-based variables until the end of the year. After that, both

importance metrics showed a downtrend towards their median at the end of the period.

These results therefore confirm a time-varying importance assumed by fundamentals, which

became relevant with the Greek crisis and contagion-based factors: (1) which assumed a key

importance with the Lehman Brothers collapse, (2) that achieved new emphasis with the

Euro debt crisis erupted in 2010, (3) that exhibited a temporary setback during 2011, but,

(4) that became relevant again with the same impact of fundamental variables starting from

2012 and and (5) finally flexing towards a median reverting level at the end of the period

together with fundamental-based variables.
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V. Conclusions

Since the start of the financial crisis of 2008 and thereafter in the European debt crisis, the

sovereign credit default swaps (CDS) have played an important role as they have acted as

measures of sovereign default risk by the participants of the financial markets. The variability

of CDS levels among countries and the tendency of some of them to move together, raised

fears of contagion and questions as to the existence of systemic risk among them.

We proposed a novel framework identifying sovereign systemic risk zones. In a first

step, we explored the cross-dynamics of sovereign CDS in terms of time-changing contagion

measures based on copulas. In a second step, these measures were assembled together with

country-specific fundamentals, thereby identifying the leading indicators with corresponding

red flags, which are valuable in stratifying sovereign systemic risk in different risk regimes.

Using data on Greek, Irish, Italian, Portuguese, Spanish, French and German sovereign CDS

over the period 2008-2013, our empirical analysis provided important findings on the origin

and dynamics of sovereign systemic risk.

First of all, we found that Greece is a world apart from July 2011 to the end of the

period, when the country started showing very low dependencies with other peripheral Euro

countries with very high levels of CDS quotations mapped onto extremely high values for

unemployment rate and Debt/GDP ratio. Secondly, we identified three main systemic risk

zones based on contagion and country-specific fundamentals: (1) a safe zone, characterized

by low unemployment rate (less than 11.75%) and moderate public indebtedness relative to

GDP (Debt/GDP ratio < 119.6%), (2) a risky zone with high unemployment rate, or with
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low unemployment rate coupled with high Debt/GDP ratio and (3) a high risk zone, where

high unemployment rate (greater than 11.75%) moves together with high Debt/GDP ratio

(greater than 93.65%) and significant sovereign dependency. Thirdly, we provided evidence

on time-varying importance of fundamentals, which captured attention during the Greek

crisis. Instead, contagion-based factors became critical close to the collapse of Lehman

Brothers, accomplishing another accentuation due to the Euro debt crisis which erupted in

2010, and finally demonstrating the same importance as the fundamental-based variables.

These results have important policy implications for early detection and the causal identi-

fication of sovereign systemic risk. Providing valuable early warning signals may be extremely

valuable for taking the right measures of prevention and intervention for countries that may

move towards dangerous risk paths.
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Figure 2: Median (Median), minimum (Min),maximum (Max) and cross standard deviation (Std-

Dev) of the pairwise Kendall’s τ computed based on the seven Euro countries.
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Figure 3: Model averaged Kendall’s τ computed for each Euro country (Greece (GR), Italy (IT),

Ireland (IR), Portugal (PORT), Spain (SP), France (FR), Germany (GER)) relative to the sovereign

US 5-yr CDS (US). Estimates for Greece have some missing values, as the corresponding sovereign

CDS was not traded during those days.
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Banks 5-yr CDS index (EUBANKS); (B) the Euro Other Financials 5-yr CDS index (EUOTHER);

(C) the US Banks 5-yr CDS index (USBANKS); (D) the US Other Financials 5-yr CDS index

(USOTHER).
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Figure 5: Importance of dependencies and systemic sovereign risk: Box plots of the VIM obtained

by running the random forest over the single Euro sovereign CDS level as dependent variable, and

all possible pairwise Kendall’s τ (excluding any dependency involving the country of the depen-

dent variable) as covariates. Beginning from the top left and moving towards the right: Italy-
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Figure 14: Risk indicators and their importance: Box plots of the VIM obtained by running

the random forest analysis over the seven Euro sovereign CDS levels in monthly frequency, using

the fourteen potential leading indicators (eight contagion-based variables and six country-specific

fundamentals) as covariates (the same used to assemble the regression tree (Figure 6). Beginning

from the top left and moving to the right, we have: Debt/GDP, Exports/GDP, GDP growth,

industrial production, inflation, unemployment rate, τFr,Ger, τGIIPS , τEuroSvgn,EuroSvgn, τsvgn,US ,

τsvgn,EUBanks, τsvgn,USBanks, τsvgn,EUOthFin, τEuroSvgn,USOthFin.47
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Figure 15: Time-varying importance of risk indicators: Single time series of all VIM obtained as

described in Figure 14.Beginning from the top left and moving to the right, we have:Debt/GDP,

Exports/GDP, GDP growth, industrial production, inflation, unemployment rate, τFr,Ger, τGIIPS ,

τEuroSvgn,EuroSvgn, τsvgn,US , τsvgn,EUBanks, τsvgn,USBanks, τsvgn,EUOthFin, τEuroSvgn,USOthFin.
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Figure 16: Time-varying importance of risk indicators: first principal component (pc) extracted

from the VIM of the first subgroup (pc-contagion) of the eight contagion-based variables, and from

the VIM of the second subgroup (pc-macro) of the six country-specific macro fundamentals. Box

plots of the two series are on the y-axis.
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VI. Appendix

This appendix complements the paper in a number of ways. Section 2 describes the variables

used and their data sources and right in the next section, the descriptives statistics of the

variables used. Section 4 describes the family of copulas used in our model framework and

Section 5 analyzes the MCMC technical details. Section 6 is a short guide of the codes used

to implement the paper and Section 7 provides an artificial example. In the last section, we

provide the results from our MCMC model for the pair of Germany and France.

Figures of the data are given at the end.
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Italy (IT), Ireland (IR), Portugal (PORT), Spain (SP), France (FR), Germany

(GER)) relative to the sovereign US 5-yr CDS (US). Estimates for Greece

have some missing values, as the corresponding sovereign CDS was not traded

during those days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Model averaged Kendall’s τ computed for each Euro country (Greece (GR),

Italy (IT), Ireland (IR), Portugal (PT), Spain (SP), France (FR), Germany

(GER)) relative to: (A) the Euro Banks 5-yr CDS index (EUBANKS); (B)

the Euro Other Financials 5-yr CDS index (EUOTHER); (C) the US Banks

5-yr CDS index (USBANKS); (D) the US Other Financials 5-yr CDS index
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5 Importance of dependencies and systemic sovereign risk: Box plots of the VIM

obtained by running the random forest over the single Euro sovereign CDS

level as dependent variable, and all possible pairwise Kendall’s τ (excluding

any dependency involving the country of the dependent variable) as covariates.

Beginning from the top left and moving towards the right: Italy-France, Spain-

Portugal, Spain-Italy, Portugal-Italy, Spain-France, Portugal-France, France-

Germany, Greece-Germany, Portugal-Germany, Portugal-Greece, Italy-Germany,

Italy-Greece, Ireland-Germany, Spain-Ireland, Ireland-France, Spain-Greece,

Spain-Germany, Portugal-Ireland, Greece-France, Italy-Ireland, Ireland-Greece. 38

6 Sovereign Risk Mapping: Resulting regression tree computed over the entire

panel data containing all the Euro sovereign CDS levels as dependent variable,

and fourteen potential leading indicators (eight contagion-based variables and

six country-specific fundamentals). Splitting rules are applied in each node

until the final one, where the arithmetic average of the CDS levels (in bps) is

reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Greek Only Area Heatmaps. The variables in the heatmaps are the following:

1: τGIIPS, 2: τFr,Ger, 3: inflation, 4: industrial production, 5: τEuroSvgn,EuroSvgn,

6: exports/GDP, 7: τsvgn,EUBanks, 8: τsvgn,USBanks, 9: GDP growth, 10: τsvgn,US,

11: τsvgn,EUOthFin, 12: τEuroSvgn,USOthFin, 13: Debt/GDP, 14: unemployment

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Safe Zone path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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9 Safe Zone Heatmaps. The variables in the heatmaps are the following: 1:

τGIIPS, 2: τFr,Ger, 3: inflation, 4: industrial production, 5: τEuroSvgn,EuroSvgn,

6: exports/GDP, 7: τsvgn,EUBanks, 8: τsvgn,USBanks, 9: GDP growth, 10: τsvgn,US,

11: τsvgn,EUOthFin, 12: τEuroSvgn,USOthFin, 13: Debt/GDP, 14:unemployment rate. 42

10 Risky Zone path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Risky Zone Heatmaps. The variables in the heatmaps are the following: 1:

τGIIPS, 2: τFr,Ger, 3: inflation, 4: industrial production, 5: τEuroSvgn,EuroSvgn,

6: exports/GDP, 7: τsvgn,EUBanks, 8: τsvgn,USBanks, 9: GDP growth, 10: τsvgn,US,

11: τsvgn,EUOthFin, 12: τEuroSvgn,USOthFin, 13: Debt/GDP, 14: unemployment

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

12 High Risk Zone path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13 High Risk Zone Heatmaps. The variables in the heatmaps are the follows: 1:

τGIIPS, 2: τFr,Ger, 3: inflation, 4: industrial production, 5: τEuroSvgn,EuroSvgn,

6: exports/GDP, 7: τsvgn,EUBanks, 8: τsvgn,USBanks, 9: GDP growth, 10: τsvgn,US,

11: τsvgn,EUOthFin, 12: τEuroSvgn,USOthFin, 13: Debt/GDP, 14: unemployment

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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14 Risk indicators and their importance: Box plots of the VIM obtained by run-

ning the random forest analysis over the seven Euro sovereign CDS levels

in monthly frequency, using the fourteen potential leading indicators (eight

contagion-based variables and six country-specific fundamentals) as covariates

(the same used to assemble the regression tree (Figure 6). Beginning from

the top left and moving to the right, we have: Debt/GDP, Exports/GDP,

GDP growth, industrial production, inflation, unemployment rate, τFr,Ger,

τGIIPS, τEuroSvgn,EuroSvgn, τsvgn,US, τsvgn,EUBanks, τsvgn,USBanks, τsvgn,EUOthFin,

τEuroSvgn,USOthFin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15 Time-varying importance of risk indicators: Single time series of all VIM ob-

tained as described in Figure 14.Beginning from the top left and moving to

the right, we have:Debt/GDP, Exports/GDP, GDP growth, industrial produc-

tion, inflation, unemployment rate, τFr,Ger, τGIIPS, τEuroSvgn,EuroSvgn, τsvgn,US,

τsvgn,EUBanks, τsvgn,USBanks, τsvgn,EUOthFin, τEuroSvgn,USOthFin. . . . . . . . . . 48

16 Time-varying importance of risk indicators: first principal component (pc)

extracted from the VIM of the first subgroup (pc-contagion) of the eight

contagion-based variables, and from the VIM of the second subgroup (pc-

macro) of the six country-specific macro fundamentals. Box plots of the two

series are on the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

17 Daily CDS prices. Left to right, top to bottom: France, Germany, Greece,

Ireland. Y-axis in bps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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18 Daily CDS prices. Left to right, top to bottom: CDS series of Italy, Portugal,

Spain, US. Y-axis in bps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

19 Posterior probability of threshold number, k. . . . . . . . . . . . . . . . . . . 73

20 Model averaged Kendall’s tau. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

21 Model averaged volatilities of marginal distributions of X and Y variables. . 75

22 Posterior probabilities of copula models. . . . . . . . . . . . . . . . . . . . . 76

23 Posterior probability of number of threshold, k, for the pair Germany-France. 77

24 Model averaged volatilities of marginal distributions of Germany and France. 78

25 Posterior copula probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

VII. Summary Statistics

Daily sovereign CDS for France, Germany, Greece, Ireland, Italy, Portugal, Spain and US

from 1/1/2008 - 10/7/2013. High values of kurtosis suggest that the series are not be

normally distributed. Almost all of the series are found to have first-order autocorrelation

for the daily data. To visualize the movements of CDS differences, we depict the series in

figures (17) and (18).
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VIII. Data Sources
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IX. Copulas

Assume that the financial series Xt and Yt, t = 1, . . . T, are normally distributed with zero

means and standard deviations σX and σY , and that a bivariate copula function Ct:[0, 1]2 →

[0, 1], is chosen to model the joint distribution function of the random variables X and Y ,

H(X, Y ),

H(X, Y ) = P (εXt ≤ x, εYt ≤ y) = Ct(Φ(εXt ),Φ(εYt ); θ), (2)

where εXt = Xt/σX , εYt = Yt/σY and Φ denotes the standard Normal distribution function.

In our analysis we use the following copulas:

1. Frank’s copula: CF
θ (u, ν) = −1

θ
ln(1 +

(e−θu − 1)(e−θν − 1)

e−θ − 1
), θ 6= 0

2. Clayton’s copula: CC
α (u, ν) = [u−α + ν−α − 1]−1/α, α > 0

3. Gumbel’s copula: CG
β (u, ν) = exp{−[(−lnu)β + (−lnν)β]1/β}, β ≥ 1

where the transformations θ = logα and θ = log(β−1) allow the parameters of the Clayton’s

and Gumbel’s copulas to lie in the (−∞,∞) interval. Frank’s copula (Frank, 1979) was

chosen for its nice symmetrical properties, whereas Clayton’s (Clayton, 1978) and Hougaard

- Gumbel’s (Gumbel, 1960, Hougaard, 1986) copulas are somehow complementary, since they

exhibit opposite upper and lower tail dependence properties.

We generalize (2) by indexing the copula function C by a parameter θ that lies in

(−∞,∞) (if θ lies in another interval we just perform a simple transformation) and by

introducing disjoint sets Ij, j = 1, . . . , J, so that

Ct(u, v) =
J∑
j=1

Ij(t)Cθj(uj, vj) (3)
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where [0, T ] =
⋃
j Ij, Ij(t) = 1 if t ∈ Ij, and in each interval Ij the parameter of the copula is

θj and the corresponding samples xj and yj. The copula parameters are also indexed by the

interval they belong, indicating that the parameters µX , µY , σX and σY may be different

in each interval Ij. A further generalization of (3) is achieved by employing a collection of

copula functions {Ci
θ, i = 1, . . . , `} so that

Ct(u, v) =
J∑
j=1

Ij(t)
∑̀
i=1

wijC
i
θj

(uj, vj) (4)

where Ci
θj

denotes the copula function Ci
θ with θ = θj and wij denotes the probability of

having the copula i in the interval Ij, so
∑`

i=1wij = 1 for all j. Thus, our general model

(4) allows both the functional form of the copula and the parameters to change within each

interval Ij. Note that copula functions model dependence in the tails of the joint distribution,

so small sample sizes are not adequate for gathering tail-behavior information and we restrict

the length of the each interval to be larger than 15 points.

The dependence between the random variables X and Y is calculated using Kendall’s τ ,

a common alternative to Pearson’s correlation measure of association. For completeness we

present below the Kendall’s τ of the families of copulas used in this paper:

1. Frank’s copula: τF =
1− 4(1−D1(θ))

θ
, τF ∈ (−1, 1) , where Dk(x) is the Debye

function, Dk(x) =
k

xk

∫ x

0

tk

et − 1
dt, k ∈ N.

2. Clayton’s copula: τC =
θ

θ + 2
, τC ∈ [0, 1).

3. Gumbel’s copula: τG = 1− 1

θ
, τG ∈ [0, 1).
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X. MCMC Technical Details

A. Prior Elicitation

We place non-informative prior model probabilities f(m) = |M |−1 and Gamma(1,1) densities

for σX and σY and for θ a zero-mean Normal prior with variance given by (γj−γj−1)|H(θ̂)|−1,

where H(θ̂) is the Hessian matrix of the likelihood function evaluated at θ̂.

B. Posterior Distribution

Suppose that we have data y that are considered to have been generated by a model m,

one of the set M of the competing models. Each model specifies a joint distribution of

Y , f(y|m, θm), conditional on the parameter vector θm. A Bayesian model determination

approach requires the specification of the prior model probability of m, f(m), and conditional

prior densities f(θm|m) for each m ∈M . Then the posterior model probability is given by

f(m|y) =
f(m)f(y|m)∑

m∈M f(m)f(y|m)
,m ∈M (5)

where

f(y|m) =

∫
f(y|m, θm)f(θm|m)dθm

is the marginal probability of model m. By calculating f(m|y), we have all required infor-

mation to express our uncertainty about a collection of models M.
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C. Laplace Approximation

Searching in both model and parameter space is possible via reversible jump algorithm of

Green (1995). To facilitate the search, we integrate out the parameter uncertainty within

each model by approximating the marginal likelihood byO

f̂(y|m) = (2π)d/2|Σ̂m|1/2f(y|θ̂m,m)f(θ̂m|m) (6)

where dim(θm) = d, θ̂m is the maximum likelihood estimate and Σ is the inverse of the

Hessian matrix evaluated at θ̂m. In our case θm is a three-dimensional parameter vector

θm = (θ, σX , σY ), so we first appropriately transform each parameter to near-normality and

then maximize the likelihood function. By performing this approximation for every model

m, we are left with the task to sample in the space of (discrete) density function specified

by (5) with f(y|m) replaced by (6).

D. MCMC Moves

Assume that the maximum number of thresholds is K. The proposal density q(m
′|m), which

proposes a new model m
′
, when the current model is m, is constructed as follows. Assume

that model m has k thresholds. Then the possible proposal moves are formed as

• ‘Birth’ : Propose adding a new threshold.

• ‘Death’ : Propose removing one of the k current thresholds if the copula is the same in

both sides of the threshold.

• ‘Move’ : Propose a reallocation of one of the k current thresholds.

61



• ‘Change’ : Propose a change of a functional form of a copula within two current thresh-

olds.

Denote by bk,dk,mk and ck the probabilities of ‘Birth’,‘Death’,‘Move’ and ‘Change’ moves

respectively. Then the proposal densities, for the model m with k thresholds, are formed as:

q(m
′|m) =



bk
T − k

, if ‘Birth′

dk
k
, if ‘Death′

mk

k
, if ‘Move′

ck
k
, if ‘Change′

A sensible choice is bk=dk=mk=ck=
1

4
, k = 1, . . . , K − 1; bK=d0=m0 = 0, b0=c0=

1

2
,

dK=mK=cK=
1

3
. For the ‘Move’ proposal density we chose a discrete uniform, which takes

equidistant values around the current threshold, and we noticed that a length 15 time points,

provides a reasonable density spread that achieves a good mixing behavior. We have noticed

that some combinations of the four basic moves offer great flexibility in our samplers so the

algorithm suggests also the following moves:

• ‘Birth-Change’: Propose adding a new threshold and changing the copula function in

one of the two resulting intervals.

• ‘Death-Change’: Propose removing one of the current k thresholds when the copula

functions are different in each side of the threshold and propose one of the two functions

as a candidate for the new interval.

The way we incorporated these extra moves in our sampler is just split all bk and dk proba-

bilities to half and thus allow equal proposal probabilities for the ‘Birth-Change’ and ‘Death-
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Change’ moves. The acceptance probability for moving from model m to model m
′

is given

by

α = min{1, f̂(y|m′
)

f̂(y|m)
× R}

where f̂ is the product of all estimated marginal likelihoods in each interval of [0, T ] calcu-

lated via (6), and R is given by

dk+1

bk
,
bk−1

dk
, 1,1

for ‘Birth’, ‘Death’, ‘Move’ and ‘Change’ moves respectively.

We note here that the Metropolis-Hastings moves above resemble the usual reversible

jump moves of Denison, Holmes, Mallick and Smith (2002), but our Laplace approximation

(6) essentially removes all the parameter dimension difference between models resulting to

a simple acceptance probability without the usual Jacobian terms.

XI. Matlab Code for MCMC

allclayton.m: Calculates the MLE estimator of the Clayton copula association parameter

and the marginal likelihood of the old and the new model.

allfrank.m: Calculates the MLE estimator of the Frank copula association parameter and

the marginal likelihood of the old and the new model.

allgumbel.m: Calculates the MLE estimator of the Gumbel copula association parameter

and the marginal likelihood of the old and the new model.

allnorm.m: Calculates the MLE estimators of the marginal densities volatilities.

bayes birth clay.m: Proposes a new threshold in an interval where the Clayton copula
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joins the variables.

bayes birth frank.m: Proposes a new threshold in an interval where the Frank copula joins

the variables.

bayes birth gumbel.m: Proposes a new threshold in an interval where the Gumbel copula

joins the variables.

bayes birth only clay.m: Proposes a threshold in an interval where no other threshold

exists and the Clayton copula joins the variables.

bayes birth only frank.m: Proposes a threshold in an interval where no other threshold

exists and the Frank copula joins the variables.

bayes birth only gumbel.m: Proposes a threshold in an interval where no other threshold

exists and the Gumbel copula joins the variables.

bayes change.m: Proposes the change of copula’s functional form in a randomly chosen

interval.

bayes kill clay.m: Proposes to kill a threshold in an interval where the Clayton copula

joins the variables.

bayes kill frank.m: Proposes to kill a threshold in an interval where the Frank copula

joins the variables.

bayes kill gumbel.m: Proposes to kill a threshold in an interval where the Gumbel copula

joins the variables.

bayes kill max clay.m: Proposes to kill the only threshold in an interval where the Clay-

ton copula joins the variables.

bayes kill max frank.m: Proposes to kill the only threshold in an interval where the Frank
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copula joins the variables.

bayes kill max gumbel.m: Proposes to kill the only threshold in an interval where the

Gumbel copula joins the variables.

bayes move clay.m: Proposes to move a threshold which belongs in an interval where the

Clayton copula joins the variables.

bayes move frank.m: Proposes to move a threshold which belongs in an interval where the

Frank copula joins the variables.

bayes move gumbel.m: Proposes to move a threshold which belongs in an interval where the

Gumbel copula joins the variables.

laplace.m: Proposes a new model by choosing among the MCMC moves.
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XII. Simulation Study

We simulate an example according to the following features:

Subsample Copula Marginal Probabilities of X and Y vari-

able

1-100 Clayton N(µX=0, σX = 0.2), N(µY =0, σY =

1.5)

101-400 Frank N(µX=0,σX = 2), N(µY =0, σY = 3)

401-900 Gumbel N(µX=0, σX = 1), N(µY =0, σY = 1)

901-1400 Clayton N(µX=0, σX = 0.2), N(µY =0, σY =

1.5)

We initiated our Markov chain to a model with zero breaks and after a burn-in period of

10× 104 iterations we obtained our Markov chain output by collecting the next of 20× 104

samples. In Figures 19 - 22 we can find the posterior probability of the threshold number,

the model averaged Kendall’s τ, the model averaged volatilities of the marginal distributions

of the variables and the posterior probability of the copula model.

XIII. MCMC Results

We present the results of the MCMC algorithm for the pair France - Germany. We initiated

our Markov chain to a model with zero breaks and after a burn-in period of 106 iterations we

obtained our Markov chain output by collecting the next of 3× 105 samples. In Figures 23 -
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24 we report the model-averaged posterior mean of Kendall’s τ for all pairwise dependencies

among the seven Euro sovereign CDS. All the others are available upon request from the

authors.
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Country Ticker Reference Entity Source

France FRTR French Republic Markit

Germany DBR Federal Republic of Germany Markit

Greece GREECE Hellenic Republic Markit

Ireland IRELND Ireland Markit

Italy ITALY Republic of Italy Markit

Portugal PORTUG Portuguese Republic Markit

Spain SPAIN Kingdom of Spain Markit

US USGB United States of America Markit

EU BANKS 5Y Index DSEBK5EDS Europe Banks 5 Year Credit De-

fault Swap Index in euro

Datastream

EU Other Financial 5Y

Index

DSEOF5EDS European Union Other Financial

5 Year Credit Default Swap Index in

euro

Datastream

US BANKS 5Y Index DSNBK5$DS North America Banks 5 Year

Credit Default Swap Index in US dol-

lar

Datastream

US Other Financial 5Y

Index

DSNOF5$ DS North America Other Financial 5

Year Credit Default Swap Index in US

dollar

Datastream

Table 2: CDS data source

and ticker identification
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Mnemonic Series Description Source

prc hicp manr All-items HICP (2005 = 100) - monthly data (annual rate of

change)

EUROSTAT

sts inpr m Production in industry - monthly data (2010 = 100) EUROSTAT

ei lmhr m harmonised unemployment rate (LFS) - monthly data EUROSTAT

gov 10q ggdebtGeneral government gross debt - quarterly data - % on GDP EUROSTAT

namq gdp c Exports Current prices, Not seasonally adjusted data - Million

euro - quarterly data

EUROSTAT

namq gdp c GDP current prices, Not seasonally adjusted data - Million

euro - quarterly data

EUROSTAT

namq gdp k GDP volumes, Not seasonally adjusted and adjusted data by

working days - Percentage change over previous period - quar-

terly data

EUROSTAT

Table 3:

Macroe-

conomic

data source

and ticker

identification
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Figure 17: Daily CDS prices. Left to right, top to bottom: France, Germany, Greece, Ireland.

Y-axis in bps.
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Figure 18: Daily CDS prices. Left to right, top to bottom: CDS series of Italy, Portugal, Spain,

US. Y-axis in bps.
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Figure 19: Posterior probability of threshold number, k.
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Figure 20: Model averaged Kendall’s tau.
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Figure 21: Model averaged volatilities of marginal distributions of X and Y variables.
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Figure 22: Posterior probabilities of copula models.
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Figure 23: Posterior probability of number of threshold, k, for the pair Germany-France.
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Figure 24: Model averaged volatilities of marginal distributions of Germany and France.
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Figure 25: Posterior copula probabilities.
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