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Abstract

We present a rational learner agent, which considers the information coming from a behavioral coun-
terpart during the allocation process. The learner agent adopts a herding behaviour by conditioning
her choice on the selection of the portfolio’s constituents. The considered framework has therefore
two types of agents with two different utility functions: the rational agent with a hyperbolic absolute
risk aversion (HARA) utility function and the other one with a general behavioral utility function.
We use the concept of performance measure related to utility functions to define agents’ prefer-
ences: the higher the measure, the higher the expected utility of a given asset. The rational learner
agent updates her information in a Bayesian manner similarly to the Black-Litterman model, which
makes use of a weighting factor in blending the two components. We support our methodological
framework with an empirical analysis including all the assets present in the NASDAQ and NYSE
stock exchange from September 1977 to December 2014.
Keywords: learner agent, investment decision, behavioral agents, Bayesian updating.
JEL-Classification: G110, G140, G150, G170.

1. Introduction

The main goal of decision theory is to determine how individuals should decide and to explain
how they actually decide. In particular, while the prescriptive approach indicates how a rational
choice should be made, the descriptive one models how the decisions are effectively made. By fo-
cusing on the latter approach, it is possible to observe individuals that systematically deviate from
what the prescriptive method defines as rational: this approach is called behavioral.
According to the efficient market hypothesis, if agents are rational and there are no frictions in
the market, the security’s price will reflect all the available information, and it will be equal to
its fundamental value without allowing for arbitrage activities. In other words, if the market is
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efficient, a profitable trading strategy that would allow obtaining risk-adjusted excess returns above
the market returns would not exist. On the basis of this assumption, classical financial economists
such as Friedman (1953) assert that pricing anomalies cannot exist,1 because if there would be some
mispricing, this would imply a de facto arbitrage that rational investors would immediately grasp.
Consequently, the mismatch would instantaneously disappear.
However, Lamont and Thaler (2003), amongst many others, have shown several empirical violations
of the law of one price, proving the existence of arbitrage opportunities in the stock market. On the
other hand, Malkiel (2003) argues the possibility that some investors are less rational than others,
and thus, pricing irregularities and predictable patterns could occur in the market. Nevertheless,
these patterns of irrationalities in the pricing are unlikely to continue and, at the end, they will not
reward a significant risk–adjusted excess return.2 Moreover, as reported by Hommes (2006), in an
efficient market, assuming that all agents are rational and have a perfect common knowledge of all
the available information, there should be no trade.
Summing up, the classical theory asserts that the absence of an arbitrage opportunity ensures that
the prices are correct, and then the market is efficient. Conversely, according to the behavioral
approach, deviations from the fundamental value are due to the presence of some agents that do
not act in a fully rational way. From a different point of view, we might think that a mispricing
could be present in the market, but its search could be too complicated for a rational investor and
unattractive because of implementation costs (D’Avolio, 2002).
Both types of agents, rational and behavioral, can be present in a market. This calls for appro-
priate modeling framework, allowing for heterogeneous agents, an area extensively discussed in the
economic literature (see Hommes, 2006, for a complete survey). The different types of agents are
usually distinguished on the basis of their expectations about the future asset returns. De Long
et al. (1990) differentiate noise traders from sophisticated traders. The first ones (i.e., as technical
analysts and stock brokers) incorrectly rely on their information. Sophisticated traders, instead,
exploit these false perceptions by adopting a herding or contrarian behaviour.
Zeman (1974) introduces a fundamentalist versus a chartist model. Fundamentalists trade on the
basis of the market fundamentals and economic factors, while chartists base their trades on observed
historical patterns in past prices. In Grossman and Stiglitz (1980), agents are divided into informed
and uninformed. Since information is costly, prices cannot perfectly reflect all the available informa-
tion in the market. The purpose of heterogeneous agent models is to explain stylized facts observed
in financial markets, such as the random walk evidences, the absence on autocorrelations of asset
prices, the fat tailed distribution of returns, and the well-know long–range volatility clustering (i.e.,
slow decay of autocorrelation of squared returns).
In this paper, we consider a novel framework for heterogeneous agents: a risk-averse agent equipped
with a hyperbolic absolute risk aversion (HARA) and a behavioral counterpart who is endowed
with a piece-wise linear plus power utility function. The aim is to propose a rational learning model
where the HARA investor, in making her investment choices, considers the information coming from
the behavioral counterpart. We define rational learning as the process undertaken through Bayesian
updating of the prior beliefs provided by HARA agent’s utility function given the presence of the

1A well–know story on the market efficiency tells about a professor and her student walking on the street, where
at some point they find $20 on the ground. The professor stops the student from picking up the bill by telling him
that if it was really a $20 note, it wouldn’t be there anymore because someone else would already picked it up by
somebody else.

2Market bubbles have also been considered by many economists as proof of some market irrationality, e.g
Shiller(2008), while other, such as Garber (1990) analyzed the market bubbles, providing a fundamental explana-
tion.

2



behavioral counterpart.
The main goal is to investigate this component’s effect in terms of utility function on asset evalua-
tion during the asset selection process. In this respect, we use the concept of performance measure,
as derived from a utility function, where the higher the measure, the higher the expected utility
provided by a given asset. In order to maintain a coherence between the two agent’s views over the
assets, we consider the generalized Sharpe ratio of Zakamouline and Koekebakker (2009b), as the
benchmark performance measure for a rational investor, while for the behavioral agent we use the
Z-ratio developed by Zakamouline (2011), starting from a general behavioral utility function. The
measures proposed in the mentioned papers have been both obtained by following and exploiting
the maximum principle approach introduced by Pedersen and Satchell (2002). In that paper, the
authors define the optimal allocation between a risky and a risk-free asset in a single-period hori-
zon. The solution of this allocation, which provides the maximum expected utility, is an increasing
function of a quantity that can be viewed as a performance measure. Therefore, the maximization
of the performance measure is equivalent to the maximization of the utility function.
Following the Bayesian approach, the model we introduce, used by the rational investor to blend
the two different evaluations (described by the performance measures), is analogue to the approach
followed by Black and Litterman (1992). From the the rational investor’s perspective, the prior
evaluation represents her view, while the conditional part represents the behavioral component.
Further, the posterior provides the aggregated expectation according to the relevance given to the
behavioral information. In our model’s application, the rational learner adopts a herding behaviour
and test if conditioning her choice towards a behavioral direction improves the selection amongst the
assets in terms of cumulative returns and other ex-post performance evaluation criteria.3 In other
words, if the rational investor’s choice is influenced, up to a certain degree, by the views of other
type of agents present in the market, we deduce the rational investor is acting in a sophisticated way.
In fact, the rational agent implicitly considers the aggregated evaluation coming from the different
utility functions as the best way to select amongst the assets for the next period. Beside introducing
out heterogeneous agent’s framework and the approach for blending rational and behavioral views,
we also introduce a criteria to evaluate the relevance of the behavioral views. Further, assuming
the presence of different behavioral agents in the market, each characterized by different designs of
the utility function, we also provide a methodology to determine if one type of agent has prevailing
views in the blending process. Finally, we set an optimizing criterion for the weighting function of
the behavioral component in absolute (weight on rational) and relative (weight of each behavioral
agent type) terms.
We support our methodological contribution with an empirical example. We focus on the weekly
data for all the stocks present in the NASDAQ and NYSE stock exchange from September 1972
to December 2014 (including also dead assets to avoid survivorship biases). Our findings show
that the heterogeneous agents model is able to promptly react at the market momentum, providing
an improvement in the selection of the portfolio constituents, and therefore showing the potential
benefits for a sophisticated investor.
The paper is organized as follows. In Section 2, we illustrate the two heterogeneous agents. In
Section 3, we present the rational learning model following the Bayesian approach similar to that
of Black-Litterman. In Section 4, we define the optimizing criterion for the weighting function of
the behavioral component. Finally, in Section 5 we perform the empirical analysis.

3In some sense, the herding behaviour can be seen in the same way as the bandwagon effect.
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2. Rational and behavioral agents

We consider two agents with different utility functions. The first decision maker is equipped
with a HARA utility function, and the second with a behavioral utility function. Generally, recall-
ing Zakamouline and Koekebakker (2009a), we define a behavioral agent as a decision maker who
discriminates between an outcome above (gain) and below (loss) a reference point. Consequently,
the investor’s utility function behaves differently in the domain of gains and in the one of losses
with a kink at the reference point.
The main difference between the two agents can be explained by their different risk attitudes: the
rational investor is risk-averse in all the domains of the utility functions while the behavioral investor
might show different risk preferences. Examples are the risk aversion in the gains and risk-seeking
in the losses, as in the S-shaped utility function by Kahneman and Tversky (1979).

2.1. The HARA utility function

We consider expected utility theory as the rational investor’s reference for the optimal decision
making.4 In this setting, the agent’s risk-aversion is associated with the concavity property of her
wealth function.
Let’s consider a general class of utility functions, concave, everywhere differentiable,

U(W ) =
ρ

1− ρ

(
λW

ρ
+ b

)1−ρ

, where b > 0, (1)

where the absolute risk aversion is

ARA(W ) = r(W ) = −
u′′(W )

u′(W )
= λ

(
λW

ρ
+ b

)1−ρ

. (2)

The utility function reduces to the quadratic utility when ρ = −1, to the negative exponential
utility function described by constant absolute risk aversion (CARA) when b = 1 and ρ → ∞, and
to the logarithmic described by constant relative risk aversion (CRRA) when b = 0 and ρ > 0.
As reported in Zakamouline and Koekebakker (2009b), the CRRA utility function provides a per-
formance measure consistent with a market equilibrium. This utility function is defined as,

U(W ) =

{
1
ρ
W 1−ρ, if ρ > 0, ρ 6= 1

lnW, if ρ = 1
(3)

where ρ measures the degree of relative risk aversion.
Mehra and Prescott (1985) indicate a ρ around 30 to be consistent with the observed equity premium
in the financial market. For high values of ρ, Zakamouline and Koekebakker (2009b) highlight that
the relative preferences for the moments of the distributions are closed to ones related to the CARA
utility function. Following the authors and for computational convenience, we consider the CARA
instead of the CRRA utility function,

U(W ) = −e−λW , (4)

4A decision maker is defined rational according to the Von-Neumann-Morgenstern utility theorem, which defines
a set of four axioms: completeness, transitivity, independence and continuity. The expected utility theory always
satisfies this theorem.
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where λ represents the coefficient of risk aversion and W the investor’s wealth.
The two-fund separation theorem states that all the investors with the same prior beliefs, inde-
pendently from their risk aversion, will invest in the same portfolio of risky assets. Sharpe (1964)
and Lintner (1965) show that this portfolio is efficient one and represents the core of the formu-
lation of the Capital Asset Pricing Model (CAPM) in a mean–variance world. Cass and Stiglitz
(1970) demonstrate that if all investors in the market have a HARA utility function with the same
exponent, the two-fund separation principle still holds. Shefrin and Statman (2000) developed a
behavioral portfolio theory (BPT) consistent with the Friedman and Savage (1948) puzzle, and show
that the mean-variance frontier and the BPT do not coincide. Moreover, the two-fund separation
theorem does not hold in their portfolio theory.
In our model, we deviate from the traditional approach and we separately evaluate each asset in
terms of its utility function contribution. Hence, we refer to a single risky asset instead analysis of
a portfolio composed of risky assets. We motivate such a choice with the need of comparing the
two agent’s views over the assets. Therefore, the evaluation of each risky asset utility will allow
creating an ordering, a ranking, of risky assets. However, this is not impacting on the rational utility
framework, as this corresponds to the limiting case in which the investor is willing to include a risky
component in its capital allocation but her choices are limited in that she can select only one risky
asset. Therefore, the investor could evaluate the expected utility associated with the investment
in each risky asset (separately considered) and then produce a rank allowing to identify the best
asset. In this process, any time the investor evaluates the expected utility given by a risky asset,
she consider the expected value of the future wealth, obtained by combining the risky asset with
the risk-free asset. We stress that the fraction of wealth invested in the risky asset is unknown and
must be determined. According to the maximum principle, the optimal fraction of wealth invested
in the risky asset is proportional to a performance measure; the higher the performance measure,
the higher the maximum expected utility for the investor. Note that such an evaluation is repeated
for each risky asset. Therefore, the asset with the highest performance measure is the best asset.
In other words, the ranking across risky asset can be based on performance measures without any
loss of generality.
The mean–variance proposed by Markowitz (1952) can be considered a particular case of expected
utility theory when the financial returns are normally distributed. In fact, the Sharpe ratio provides
the optimal solution for the maximization of the expected, utility since the distribution of returns
is completely described by the first two moments.
In this regard, let’s consider an investor endowed by a wealth W at the beginning of a period t0,
where a is the amount of wealth allocated in a risky asset x and the remaining w − a, the part
allocated in the riskless asset rf .
At the end of the period t1, the investor’s wealth will be

w̃ = a× (1 + x) + (w − a)× (1 + rf ) = a× (x− rf ) + w × (1 + rf ). (5)

The investor’s objective is to maximize the wealth according to the choice of a,

max
a

E[U(w̃)] (6)

and therefore the maximized expected utility will be

E[U∗(w̃)] = E[−e−λ[a(x−rf )+w(1+rf )]] = E[−e−λ[a(x−rf )] × e−λw(1+rf )
︸ ︷︷ ︸

q

]. (7)

It is worth noting that a∗ is independent from the investor’s initial wealth, and we can treat q as a
fixed quantity.
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By setting x0 = w(1+ rf ) as in Zakamouline (2011), we can approximate the expected utility using
Taylor’s series,

E[U(w̃)] = −1 + aλE(x− rf )−
λ2

2
a2E(x− rf )

2 +O(w̃) (8)

and by the first order condition (FOC),

∂E[U(w̃)]

∂a
= λE(x− rf )− λ2E(x− rf )

2a = 0, (9)

we obtain that the Sharpe ratio is proportional to the quantity that maximizes the expected utility
function,

a∗ =
1

λ

µ− rf
σ2

=
1

λ

SR

σ
. (10)

As shown by Gatfaoui (2009), when there is a departure of risky asset returns from Gaussianity,
the ratio begins to be biased, both in the measurement and in the ranking amongst the assets.
Therefore, several authors started to consider alternative performance measures, more robust to
non-normality evidences. Cherny (2003) and Zakamouline and Koekebakker (2009b), amongst oth-
ers, propose an improvement of the ratio with the inclusion of higher moments. In particular, the
authors propose a parametric Sharpe ratio adjusted for skewness and kurtosis, assuming the normal
inverse Gaussian (NIG) as the underlying probability distributions of the financial returns. This
probability density function is particularly suitable for distributions with fat tails.
Alternatively, using a non-parametric methodology, both authors followed the Hodges (1998) con-
jecture by deriving a generalized Sharpe ratio (GSR).5

Recalling the maximization of the expected utility,

E[U(w̃)] ∝ E
[
− e−λ(x−rf )

]
= max

a

∫ ∞

−∞

−e−λa(x−rf )f̂h(x)dx, (11)

where f̂h(x) is the estimated kernel density function of observed returns. The GSR is obtained by
the numerical optimization of the expected utility, obtaining:

GSR =
√

−2 log (−E[U∗(w̃)]). (12)

Notably, such an approach takes into account all the empirical moments of the returns probability
distributions, being thus robut to deviations from Gaussianity. We consider the GSR ratio as the
performance measure adopted by the rational investor to rank assets.
Finally, it worth noting that the GSR approaches the standard Sharpe ratio when the underlying
distribution of the risky asset is close to the Gaussian distribution.

2.2. The behavioral utility function

As mentioned above, a rational investor should behave as described in the expected utility
theory. Nevertheless, the presence of people who systematically deviate from this behaviour is com-
monly observed.6 Empirical analyses on stock market data has shown that prices present an excess

volatility, compared to what we might expect given the dynamics of their economic fundamentals
(Cutler et al., 1989, See for example). Another important stylized fact is clustered volatility, where

5See Zakamouline and Koekebakker (2009b) for a detailed explanation.
6The paradox of Allais (1953) was the first and the best empirical example of a systematic violation of rationality

in the expected utility, particularly, the independence axiom.
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asset price movements are characterized by periods of high volatility and by periods of low volatil-
ity.7 These examples enforce the hypothesis of the presence of non-rational and heterogeneous
agents.
In a behavioral framework, the investor’s utility function behaves differently in the domain of gains
and in the one of losses, with a kink at the reference point; as an example a behavioral utility
function might have the following form

U(W )

{

U+(W ) if W ≥ W0,

U−(W ) if W < W0,
(13)

where U+(W ) is the utility function when the investor’s wealth W is above the reference point W0,
and U−(W ) is the utility function when the investor’s wealth W is below the reference point W0.
Zakamouline (2011) introduced a generalized behavioral utility function characterized by a piece–
wise linear plus power utility function,

U(W ) =

{

1+(W −W0)− (γ+/α)(W −W0)
α, if W ≥ W0,

−λ(1−(W0 −W ) + (γ−/β)(W0 −W )β), if W < W0.
(14)

where W0 is the reference point, 1+ and 1− are the indicator functions in {0, 1} which define the
linear part of the utility, γ+ and γ− are real numbers that model for the shapes of the utility, and
the parameters λ > 0, α > 0 and β > 0 are real numbers. This utility function is continuous
and increasing in wealth with the existence of the first and second derivatives, with respect to the
investor’s wealth.
Under some conditions and by using the maximum principle, Zakamouline (2011) derives the Z-
ratio, the performance measure which maximizes the utility function; thus having the same role
of the GSR for the representative rational investor. The expected generalized behavioral utility
function can be thus replaced by a function of mean and partial moments of the returns,

Zγ−,γ+,λ,β,1 =
E(x) − r − (1−λ− 1)LPM1(x, r)

β
√

γ+UPMβ(x, r) + λγ−LPMβ(x, r)
, (15)

where x is the returns series of the asset and r is set to the risk–free rate, LPM and UPM are
respectively the lower and upper partial moments as defined by Fishburn(1977),

LPMn(x, r) =

∫ r

−∞

(r − x)ndFx(x),

UPMn(x, r) =

∫ ∞

r

(x− r)ndFx(x),

(16)

where n is the order of the partial moment of x at a given threshold r, usually the risk-free asset
rf , and Fx(·) is the cumulative distribution function of x.
The behavioral utility function of Zakamouline (2011), see equation (15), allows modelling several
different preferences of a behavioral decision maker. In fact, we can obtain several behavioral types
of utility through the calibration of the function parameters. Consequently, we can easily shape the
concavity and convexity in the domain of gains or losses.
We consider here four different cases which recall some well-known behavioral utility functions. We
label them in the same way as Zakamouline and Koekebakker (2009a).

7GARCH models introduced by Engle (1982) and Bollerslev (1986) explain these type of phenomena.
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• behavioral I is the Fishburn’s utility function.
The agent equipped with this utility is risk averse in the domain of losses and risk neutral in
the domain of gains.
The parameters are set as follows:

γ+ = 0, γ− = .1, 1+ = 1, 1− = 1, λ = 1.5, β = α = 2.

Notably, the Sortino ratio is the measure that maximizes the utility function when the risk
aversion λ is equal to 1; see Sortino and Price (1994).

• behavioral II is analogous to the the utility function used in the prospect and cumulative
prospect theories. In this utility function, the decision maker exhibits loss aversion, which is
defined in a local sense around the reference point (Köbberling and Wakker, 2005).8 The risk
aversion coefficients equals

λ =
U ′(W0−)

U ′(W0+)
,

where we have the left derivative in the numerator and the right derivative in the denominator
. If λ is greater than 1 the individual exhibits loss aversion. The parameters are set as follows:

γ+ = .1, γ− = −.1, 1+ = 1, 1− = 1, λ = 1.5, β = α = 2.

• behavioral III relates to the disappointment theory (DT) introduced by Bell (1985). The
decision maker experiences disappointment when an outcome is worse than expected (the
reference point). Conversely, when an outcome is better than the expected one, a magnification
is generated. The utility function is concave below the reference point and it can be convex
above. The parameters are set to:

γ+ = .1, γ− = .2, 1+ = 1, 1− = 1, λ = 1.5, β = α = 2.

• behavioral IV is the utility where the decision maker is equipped with piece-wise power
utility function with non-linear parts.
The parameters are set to:

γ+ = −α, γ− = β, 1+ = 0, 1− = 0, λ = 1.5, α = 1.5, β = 2.

The existence of a solution to the optimal capital allocation requires that β > α; therefore, the
investor does not show loss aversion. Zakamouline (2011) shows that the performance measure
that maximizes their utility function is given by the Farinelli-Tibiletti ratio, see Tibiletti and
Farinelli (2003).

It is worth noting that the general behavioral utility reduces to a quadratic utility when λ = 1,
α = β = 2 and γ+ = γ− > 0. If returns are normally distributed, the CRRA, the CARA and
the quadratic utility are maximized in the function of the Sharpe ratio measure. Therefore, when
returns converge to normality, we can relate the rational investor to a peculiar case of the general
behavioral utility function. This fact confirms the appropriateness of the two types of utilities. In
Figure 6 we provide examples of the shape of the rational and behavioral utilities we consider.

8In contrast, Kahneman and Tversky (1979) define the loss aversion in a global sense,

−U(W0 −∆W ) > U(W0 +∆W ), ∀∆W > 0.
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3. A Rational Learning Model

The aim of the model is to blend the assets selection by the rational investor with the choice
of the behavioral counterpart. This combination is done by conditioning the rational choice on a
behavioral ordering where the evaluation is performed in terms of expected utility. If the rational
investor modifies her choice by taking into account a behavioral selection in the market, then, up
to a certain degree, she acts in a more sophisticated way.
In fact, this agent is adopting a herding behaviour in order to improve her investment. Herding
behaviour is the tendency of an investor to abandon her own information in order to mimic the
behaviour of other investors. This agent considers implicitly the aggregated evaluation coming from
the different utility functions as the best way to perform the optimal selection amongst the assets,
with a “one step ahead” horizon.
In practice, the more weight is given to the behavioral component, the greater is that component’s
relevance for the rational investor. The two extremes are the limiting cases where the mixed selection
collapses into one of the components.
As reported in Forbes (2009), if investors are not irrational and are learning to invest better, their
learning process takes place in accordance with the Bayes’ rule,

P (A|B) =
P (A)P (B|A)

P (B)
. (17)

Therefore, the most appropriated way to obtain the aggregated measure is using the Bayesian
approach. We conjugate these two components analogously to the model proposed by Black and
Litterman (1992).
We place our perspective on an investor with the HARA utility function, which is considered the
benchmark for the rational investor in the expected utility framework. Hence, the generalized
Sharpe ratio is the measure used to evaluate the assets in terms of this utility function. This is our
prior distribution leading to a rational ranking of assets. We assume for simplicity that the rational
investor is myopic by ignoring that other agents are also engaged in a dynamic learning process.
The general behavioral utility function represents the additional information used along with the
prior distribution to infer the posterior one. The Z ratio from Zakamouline (2011) is the measure
coming from this utility function. We structure the model in a similar way as that of He and
Litterman (2002) where the main difference is due to the functional transformation of the returns
through the performance measures. Consequently, the aggregated performance measure is defined
by the posterior distribution.

3.1. The model

Generally, we consider the performance measure of an asset as a random variable independently
and identically distributed,

PMi ∼ iid(µ, σ2). (18)

We are interested in identifying the assets i with the highest values of the expected PMi as those
representing the best opportunity for the investor in terms of utility function. In performing this
choice, we start from a prior distribution for µ, which is assumed to be normally distributed when
centred to the generalized Sharpe ratio obtained from the optimized expected utility function,

µGSR = GSR(E(U∗(Wi)))) + ε, (19)

where ε is a normally distributed error with mean equal to zero and variance, τσ2. As in the
Black–Litterman model, τ represents the uncertainty on the prior density. The higher the τ , the
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higher the uncertainty given to the prior density. Conversely, the closer τ is to zero, the lower is
the variance of the prior density, and therefore the lower the relevance given to the conditioning
information represented by the behavioral component. The parameter τ is defined in [0,∞].
If we assume a coexistence between a behavioral and a rational component in the market, it is
reasonable to expect an improvement in a ranking that merges the points of view, either from a
return perspective, from a risk view, or from a performance evaluation analysis.
The conditioning information coming of the general behavioral utility function can be of different
form, according to the shape given to the utility in terms of gains and losses preferences. If we
consider the behavioral types of utility as described above, we have four different types of investors.
We assume thus that different behavioral investors are jointly active in the market and the rational
investor accounts for their joint presence.
Generally speaking, we can have k different behavioral views (as in the Black-Litterman model).
Those, similarly to the B&L model, are linearly combined with a selection vector. The latter, in our
case, collapses to a k-dimensional vector of ones, named P. Moreover, we denote by Zγ−,γ+,λ,β,1 the
k-vector of the behavioral measures that we declined from the Z ratio. We thus have the following
quantities:

P ′ = ~1,

Z
′ = (Z1, Z2, Z3, Z4) ,

(20)

where we have the four different Z ratios associated with the four declinations of the behavioral
utility function defined in Section 2.2. The mean of the behavioral measures is centred to the Z
ratios plus an error term normally distributed with zero mean and variance matrix Ω:

µZ = Zγ−,γ+,λ,β,1 (E(U∗(Wi))) + η (21)

We assume that ǫ and η are independent,

(
ε
η

)

∼ N

(

0,

[
τσ2 0
0 Ω

])

(22)

and with an application of the Bayes theorem, similarly to Black and Litterman (1992), the ag-
gregated expectations (behavioral and rational) are distributed as a normal with mean µp and
covariance matrix Mp, with the following analytical expressions

µp =
[
(τσ2)−1 + P ′Ω−1P

]−1 [
(τσ2)−1GSR + P ′Ω−1

Zγ−γ+,λ,β,1

]
(23)

and
Mp =

[
(τσ2)−1 + P ′Ω−1P

]−1
,

where, µp represents the aggregated expected performance measure coming from a mixture of the
two components: the first from the HARA type utility function and the second from the behavioral
utility functions I to IV. Thus, µp can be used as a performance measure to rank the investment
universe blending the rational and behavioral perspective.

4. Calibrating τ and the weight of the behavioral components

Since the (rational) agent is learning looking at the other (behavioral) agent types according
to the Bayesian framework, we need to calibrate the weight of the behavioral component (the
conditional) by tuning the uncertainty on her prior beliefs. Moreover, in order to act in a more
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sophisticated way, the rational learner agent should also calibrate the relative weight of each compo-
nent, the various behavioral views. In fact, in a particular market momentum, one of the considered
behavioral agents could be more (less) relevant with respect to the others. More importantly, this
prevent us to impose a specific structure on the model (for example attributing the same weight to
each agent).
In this regard, we reformulate equation (20) as

P ′ = ~Θ,

Z
′ = (Z1, Z2, Z3, Z4) .

(24)

where Θ = (θ1, θ2, θ3, θ4). Finally, the rational learner agent should optimize τ and Θ according to
a specified criteria. The chosen criterion is to weight the conditional component (and the relative
weight of each behavioral component) using the past performances in terms of cumulated returns,

rp =
1

m

t∑

l=t−m+1

rp,l, (25)

where rp,l is the time l return of an equally weighted portfolio, and m represents the time range
for the portfolio evaluation (from time t − m + 1 to time t). The portfolio is composed of the
best-performing equities, according to equation (23). This criterion function can be interpreted as
risk neutral, since we are focusing only on the first moment.
Let At (τ,P(Θ)) be the set containing the M best assets selected across the K assets included in the
market (with M << K) at time t. This set depends on τ and Θ, as a change in these parameters
modifies the rankings produced by the agents. The set is also a function of time, given that the
impact of the behavioral choices might change over time. Therefore, we represent the portfolio
returns as

rp,l =
1

M

∑

j∈At(τP (Θ))

rj,l, (26)

where rj,l is the return of asset j at time l; we stress that the index j varies from 1 to K, although
only M values are included in the set At (τ, P (Θ)). Given the dependence on τ and Θ of the best-
performing asset set, the portfolio’s cumulative return in (25) is also a function of both parameters.
The optimal choice of τ and Θ is determined by maximizing the portfolio returns, that is,

max
τ,Θ

f (τ) =
1

m

t∑

l=t−m+1

rp,l

s.t.

{

rp,l =
1
k

∑

j∈At(τ,P (Θ)) rj,l,
∑4

i=1 θi = 1, θi > 0.

(27)

As previously noted, we are considering an equally weighted allocation scheme across the best assets.
This choice is clearly restrictive, but it allows limiting the impact of the portfolio weights estima-
tion error and it has been shown to be preferred over optimal weighting schemes by DeMiguel et al.
(2009).
The optimal τ∗ and Θ∗ provide the maximum cumulative return obtained by investing in a subset
of risky assets traded in the market and making decisions by blending the rational and behavioral
rankings. Consequently, the estimated τ∗ represents the relevance of behavioral choices or, con-
versely, the reliability of the rational rankings. The methodology for the optimal criteria investing
in a subset of risky assets from an investment universe is similar to the one adopted by Billio et al.
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(2012). Looking at the estimated optimal parameters, a high value of τ∗ implies that, to obtain
the optimal return, the rational investor should have corrected her choice towards a behavioral
direction. On the other hand, a low value of τ∗ means that the investor should make decision
according to her prior rational rankings. The parameter Θ∗ represents the optimal weight given to
each behavioral agent and it lies in the domain [0, 1]. The criterion function enables us in some
sense to weight the components, rational versus behavioral, through τ . Moreover, by solving (27)
over multiple samples, we obtain a sequence τ∗t that gives further insight into the fluctuation and
evolution of this factor. We see the choice of this criterion function as natural since it focuses only
on the expected return of the given portfolio, that is, a risk-neutral evaluation. Caporin et al.
(2014) in an analogous framework considered the rational and the behavioral agent equipped with
an S-shaped utility function. Their analysis is focused on the financial interpretation of τ and it is
based on the S&P 500 market.

5. Blending rational and behavioral ranking in the US market

Our purpose is to apply the model to an investment universe composed by a large number of
assets. We want to compare the different strategies, behavioral, rational and the Bayesian blending,
by building portfolios based on the k < n selected constituents. The portfolios we compare stem
from the ranking provided by the performance measure in terms of the utility of the rational investor
(the generalized Sharpe ratio), the one based on the behavioral agent (the Z ratio) and finally, the
one from the rational investor conditional to the behavioral component. We stress the portfolios
are equally weighted in order to focus on the agents’ selection, to avoid possible corner solutions
obtained by utility maximization, and to avoid the impact of weights estimation error.

5.1. The dataset

Our investment universe is given by the full list of quoted stocks on the NASDAQ and NYSE
from September 1972 to December 2014 for a total of 15, 790 assets. Dead series are also included
in the dataset. We handle the delisting and merger and acquisition of a stock by assuming that
if the investor has selected this stock, she would have disinvested the asset during the last period
of its quotation in the market. The series have been downloaded from Datastream at a weekly
frequency. We also recover a proxy of the risk-free asset, the US Treasury 3 Month Bill rate. In
a first evaluation, we refine the investment universe a priori by excluding the asset with a lower
market value in order to mitigate the liquidity risk. The level of exclusion is fixed at 50%; Figure 2
shows the final number of assets for each period. We build the benchmark for market comparison as
a value weighted (equally weighted) index based on the investment universe considered at a given
time t. Since the number of assets in the investment universe is time varying, it follows that the
number of selected constituents k changes according to nt.

5.2. Model settings and estimation

We apply the model on rolling windows of 240 weekly returns to take into account the time-
varying structure of the series (Zivot and Wang, 2007). The rolling window is moved forward by
one week at each iteration. Hence, an asset enters the valuation process when its time series is
longer than the dimension of the bandwidth. The dimension of the invested portfolio k represents
a fraction α of the investment universe nt in order to take into account its expansion through time
as showed by Figure 2. In this regard, we set α equal to 25%.9

9As robustness check, we considered also α = {1%, 5%, 10%, 50%, 75%}. Results are reported in complementary
material available upon request.
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We report in Figure (4) the number of portfolio constituents for the sample. On each rolling window
we estimate the performance measures (GSR and Z ratios), then we estimate their variances in
equation (22) using a block bootstrap procedure (Lahiri, 1999) with a block of dimension 16 in
order to consider the potential time dependence among the returns. The bootstrap procedure has
been applied to the returns, measures have been computed for each iteration and then the variances
have been obtained. Once the variances are obtained, we proceed with the estimation of τ and Θ
through the maximization in equation (27). Finally, after calculating µp, we rank the investment
universe and we select the k assets with the highest values as portfolio constituents. The sequential
estimation have been implemented in Matlab and takes approximately 138 hours for 532,593,120
iterations on a cluster multiprocessor system which consists of 4 nodes; each comprises four Xeon
E5-4610 v2 2.3GHz CPUs, with 8 cores, 256GB ECC PC3-12800R RAM.

5.3. In-sample results

In this section, we discuss the estimation of the optimal τ∗t and the weights of each behavioral
agent type, Θ∗. Figure 3 shows the dynamic of the τ∗t from September 2, 1977 to December 19, 2014.
The estimated factor is stationary in mean until March 2013, after that we have a change since the
τ∗t approaches zero, which means that the rational learner agent should remain completely on her
prior beliefs in evaluating the market’s assets. This can be observed also in Figure 6, which shows
the estimated optimal weight Θ∗ of each behavioral component through the sample. Until 2003, the
predominant weights are constituted by the Fishburn (Z1) and Farinelli-Tibiletti (Z4) agent. After
that period, the dynamic on the behavioral components changes. In fact, we can observe a similar
dynamic of the τ∗t on the weight assigned to the agent equipped with a Fishburn utility function
(Z1), which approaches to one after March 2013. Clearly, the dynamic of the estimated parameters
show that the model is “working” and therefore the learner process if profitable for the rational
agent in terms of cumulative returns if she is conditioning her beliefs toward the direction of other
agents. If there are no gains in the conditioning, τ converges to zero, as shown in Figure 3 from
March 2013. To investigate the degree of similarity among the rational agent with and without the
learning process, we compute a concordance index (CI) to highlight the common selection in terms
of assets. That is, we want to compare the rankings and the optimal selection made by the rational
agent when she does/does not account for the presence of behavioral choices in the market. We
thus compute the following index

CI =
| IRL ∩ IGSR |

M(α)
∈ [0, 1], (28)

where IRL, IGSR are the set of selected assets for two strategies GSR and RL, | · | indicates
the cardinality of the set, and M(α) is the number of selected assets as a function of the chosen
fraction of the investment universe. Figure 5 shows the concordance index, which approaches one
when τ∗t move toward zero at the end of the sample period. This confirms the coherence of the
model. In fact, at the end of the sample, the rational agent’s posterior collapses on the prior
and therefore the two selection coincides. From the rational learner agent perspective, the change
in τ∗ has a clear meaning: the agent is not conditioning her choice since she obtains a higher
cumulative return without conditioning. However, the economic and financial interpretation of this
variation in τ is not immediate. One possible explanation could be represented by the adaptive
market hypothesis (AMH) proposed by Lo (2004). If we consider the market as an evolutionary
system where participants interact and evolve dynamically according to intrinsic rules of economic
selection, changes in τ∗t and Θ may explain part of this evolution. In fact, profit maximization,
utility maximization, and general equilibrium are relevant aspects of market ecology (Lo, 2004).
Hoffmann et al. (2013) combining monthly survey data with trading records document significant
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swings in trading and risk-taking behavior during the 2007-2009 crisis, which are driven by changes
in investor perceptions.
As robustness check, we test if the volatility of the τ parameter is driven by some factors such as the
market returns, the volatility of the market or simply by the dimension of the investment universe.
In this regard, we estimate the volatility of τ∗t using an ARFIMA(1,d,1)-FIGARCH(1,d,1) model
and the market volatility using a FIGARCH(1,d,1) on the value-weighted index.10 Table 1 reports
the estimation results and Figure 7 shows the estimated volatility of τ∗t . Clearly, market returns and
market volatility do not explain the volatility of the τ factor (first and second column), adjusted-R-
squared are close to zero although market volatility is significant and negative related, which means
that in turbulent periods the weight of the behavioral component decreases in absolute terms, while
in relative terms it can be seen in Figure 6 that the weights are distributed across type II (S-shaped
utility function) and type III (disappointment theory), which are related both to the concept of
loss aversion. It is worth noting that these two types of behavioral agents arise by the mid-2000s
until 2003, while before that date the weights are concentrated mainly on Type I (Fishburn’s utility
function) and Type IV (Farinelli and Tibiletti’s agent). We control also for the dimension of the
investment universe nt, which could be a source of volatility in the factor since it directly affects
the cardinality of the selection. Estimation results show a significant positive relationship, but with
a coefficient very close to zero; the adjusted-R-squared is close to 12% (third column). Finally, the
last column of Table 1 reports the estimation with all the covariates, which confirms the previous
results.

5.4. Out of sample results

We conduct an out-of-sample application of the model by considering the time t the values τ∗t
and Θ∗ as the best predictor for t + 1 (a week ahead). In this regard, we perform the allocation
from September 1977 to December 2014 and we initialize the portfolios with a value of 100. Table
(2) reports the descriptive analyses of the portfolios, while Figure 8 plots the cumulative returns
among different agents. Over the full sample the best portfolio in terms of cumulative returns and
Sharpe Ratio is the value-weighted market index. The second-best is the rational agent, without
learning mechanism. Figure 9 shows the comparison among the rational learner agent, the rational
agent (whom remains on her prior), the value-weighted and equally weighted market index, while
table 3 reports the annual portfolios’ statistics. The results suggest that, when focusing on a long
investment period, about 37 years, rational choices seems the most profitable and the less risky.
This is somewhat coherent with the perception that behavioral views might be subject to larger
volatility that could thus induce a loss in terms of returns. On the contrary, the poor results with
respect to the benchmarks are not surprising nor lead to a negative evaluation of our approach
as the allocation strategies have not been created for the purpose of beating the benchmark, but
rather with the purpose of highlighting the effect of the rational learning approach. In order to shed
further light on the comparison among the various agents, we move to a yearly evaluation of the
strategy performances. The Sharpe Ratio (last column), which is a performance measures related
with the rational agent, shows that the rational learner mechanism was profitable during the years
1979, 1980, 1988, 1999, 2003, 2004, 2005, 2007, 2010, 2012, 2013 and 2014 (13 out 38) using Θ∗

t and
τ∗t as predictor for t + 1. Therefore, there are periods where the blending of rational views with
behavioral views lead to an improvement of performances. Notably, the evidence is much stronger
in the last 15 years, corresponding to the increase of direct trading by private/small investors,
those who are more exposed to behavioral choices (we could think that a professional investor

10Estimation results of these regression are not reported but are available upon request.
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should make choices in a more rational way). As stated in Barber and Odean (2001), the internet
changed how information is delivered and the way agents can invest on this information. From
the mid-90s the number of brokerage accounts began rapidly to expand opening the gate to access
directly to the financial market even to the small investors. Meneu and Pardo (2004) investigated
the existence of a pre-holiday effect in different assets due to the reluctance of small investors to
invest on pre-holiday days. Their results show that institutional investors could have exploited
this anomaly. In an analogous way, if we think about institutional investors as the rational ones,
they should take into account the behavioral component, which is reasonably related to small and
private investors. To further compare the approaches, we focus on the turnover reported in Figure
10. The Rational Learner agent shows an higher turnover, which is due to the learning process
that cause a larger volatility in the portfolio composition. Notably, at the end of the period, the
turnovers are equal since the selection of the rational learner converges to that of the rational agent.
Figure 11 shows the portfolio’s composition according to the industrial composition benchmark. In
the Appendix, we also report the figures for each behavioral agent. There is a degree of similarity
among the behavioral agents as shown in Figure A.14-A.17, for instance on the weight attributed to
the Utilities industry around 1997. On the other side, the rational agent in the same period gives
more weight to Financial and Technology industry. Figure 11 shows the composition for the rational
learner agent, which is clearly more volatile due to the composite selection. In fact, the portfolios’
composition reflect the different preferences among the agents. Figure 12 shows the diversification
index for the rational agent and the rational learner agent obtained as,

DIt =

s∑

j=1

∣
∣
∣
∣
ωi −

1

s

∣
∣
∣
∣
, (29)

where s is the number of industries and ωi is the weight of each sector in the given portfolio. The
average of the DI for the rational agent (GSR) in the period is equal to 0.6662, while for the rational
learner agent (RL) is equal to 0.7012. The values are similar for both agents. It is worth noting
that at the end of the period the portfolio’s composition of the rational learner agent collapses into
the composition of her prior (GSR). Clearly, in the out of sample case the portfolios’ returns are
better for the rational agent without the learning process. However, it is worth noting that these
results strongly depend on the forecast made on τt+1 and Θt+1.

6. Conclusion

In this paper, we present a heterogeneous agent model, which considers two decision makers;
the classical risk-averse agent equipped with a HARA utility function and an agent with a general
behavioral utility function. The HARA agent adopts a learning process by updating her beliefs ac-
cording to the presence of a behavioral component. The learning process takes place in a Bayesian
manner, where the model conjugates the choice of a HARA investor towards a behavioral counter-
part with weighing factor τ . In our investigation, the rational investor adopts a herding behaviour in
the selection of the portfolio constituents. This effect has been checked by estimating the weighting
factor τ and the weight of each behavioral component Θ with an optimizing criteria.
We performed an empirical analysis over all the assets listed in the NASDAQ and NYSE stock
exchange from September 1972 to December 2014. In sample results show an improvement for the
rational investor who adopts a learning process, modifying her choice in the evaluation of the assets
with the behavioral counterpart. When the conditioning mechanism is no longer convenient τ goes
very close to zero (as in last part of the sample, March 2013) showing its ability as learning factor
since it quickly reacts to the market momentum. Moreover, the volatility of the τ∗t factor is not
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driven by market returns, market volatility or changes in the investment universe. The relative
weights of the behavioral component Θ∗

t suggests that different agents could capture different mar-
ket momentum. Out-of-sample results are obtained using as best predictor for t + 1, τ∗t and Θ∗

t .
In this case, we show that in some period the learning process is convenient for the learner agent.
Clearly, the results in the out of sample application strongly depend on the forecast methodology
used for the τ and θ factors to obtain the aggregated performance measure in t + 1. This can be
further refined as future extension given the persistence showed in the factors’ dynamic. In our em-
pirical analysis, the Bayesian learner investor with a HARA utility function has adopted a herding
strategy; further research should also analyze a contrarian strategy allowing for negative weights on
θi, or a conditioning switching strategy.
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(a) Rational Type

(b) Behavioural Type I (c) Behavioural Type II

(d) Behavioural Type III (e) Behavioural Type IV

Figure 1: Negative exponential utility function with constant absolute risk aversion (CARA) and the four specified
utility types from Zakamouline’s (2011) general behavioural utility function.
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Figure 2: Number of assets in the investment universe across time.

Sep-77 May-81 Jan-85 Sep-88 May-92 Jan-96 Oct-99 Jun-03 Feb-07 Oct-10 Jun-14

10

20

30

40

50

60

70

80

90

100

Figure 3: The estimated optimal τ in the period 1977-2014 (weekly frequency). The τ represents the uncertainty in
the rational agent (prior). The higher the its value, the greater is the weight assign to the conditional part.
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Figure 4: The number of portfolio’s constituents in each period according to the invested fraction of the investment
universe in the period 1977-2014 (weekly frequency).
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Figure 5: The concordance index among the selection of the rational learner agent (RL) and the rational agent (GSR).
The solid line represents the smoothed series. The considered period is 1977-2014 (weekly frequency).
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Figure 6: The estimated optimal weights Θ for each behavioral utility function in the period 1977-2014 (weekly
frequency). The behavioral utility functions are: Fishburn (Z1), S-shaped (Z2), Disappointment theory (Z3), and
Farinelli-Tibiletti (Z4).
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Figure 7: The estimated volatility for τ using the ARFIMA(1,d,0)-FIGARCH(1,d,1) model.
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Figure 8: The cumulative returns of the agents’ portfolio: the rational learner (RL) agent, the rational agent (GSR),
the Fishburn agent (Z1), the S-shaped agent (Z2), the Disappointment theory (Z3), and the Farinelli-Tibiletti (Z4).
The considered period is 1977-2014 (weekly frequency).
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Figure 9: The cumulative returns of the value weighted market index (vw) and equally weighted market index (ew),
the rational learner (RL) agent and the rational agent (GSR). The considered period is 1977-2014 (weekly frequency).
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Figure 10: Turn-over of the agents’ portfolio: the rational learner (RL) agent and the rational agent (GSR). The
considered period is 1977-2014 (weekly frequency).
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Figure 11: Portfolio’s composition according to the Industrial composition benchmark (ICB) Supersectors for the
rational learner agent (RL). The considered period is 1977-2014 (weekly frequency).
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Figure 12: Diversification index on Portfolio’s composition according to the Industrial composition benchmark for the
rational agent (GSR) and the rational learner agent (RL). The considered period is 1977-2014 (weekly frequency).
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List of Tables

Table 1: Results from regressing the estimated volatility of the factor τ on market returns, volatility and the investment
universe dimension. The period is from September 1972 to December 2014 (1947 observations, weekly frequency).

στ

(Intercept) 12.5800*** 12.8952*** 11.8015*** 12.3765***

(0.0394) (0.0932) (0.0602) (0.0907)
rmkt 1.2597 - - 1.7392

(1.4969) (1.3790)

σmkt - -11.7593*** - -25.5001***

(3.1758) (3.0300)

nt - - 0.0007*** 0.0008***

(0.0000) (0.0000)
R-squared 0.0004 0.0070 0.1212 0.1527

adj-R-squared -0.0001 0.0065 0.1207 0.1514
LL -3833.09 -3826.61 -3707.68 -3672.14

AIC 7670.18 7657.21 7419.36 7352.27
BIC 7681.33 7668.36 7430.51 7374.57
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Table 2: Descriptive analysis of realized portfolio returns. The columns report the cumulated returns obtained during the period 1977-2014, the annualized average
monthly return and annualized variance, the minimum and maximum monthly returns, the skewness and kurtosis indices computed on weekly returns, the 5%
value-at-risk and expected shortfall, and the Sharpe ratio. We report the rational agent (GSR), the rational learner agent (RL), the Fishburn agent (Z1), the
S-shaped agent (Z2), the agent according to the Disappointment theory (Z3), and the Farinelli and Tibiletti agent (Z4). For the market we include the equally
weight market index (ewMKT) and the value weighted market index.

cum.rets std.ann Min Max Skew Kurtosis VaR ES Sharpe

GSR 27.7058 0.1564 -0.1894 0.1543 -0.5425 10.5897 -0.0309 -0.0493 0.0905
Z1 8.1110 0.2436 -0.2289 0.2107 -0.5622 8.0903 -0.0528 -0.0812 0.0508
Z2 7.2380 0.2384 -0.2248 0.1994 -0.5742 8.0579 -0.0520 -0.0796 0.0496
Z3 7.3709 0.2386 -0.2248 0.1994 -0.5749 8.0512 -0.0516 -0.0797 0.0498
Z4 5.1328 0.2244 -0.2214 0.1674 -0.6356 7.8175 -0.0490 -0.0750 0.0457
RL 12.5581 0.2061 -0.1980 0.1499 -0.5567 7.5436 -0.0449 -0.0681 0.0613

ewMKT 16.6575 0.1878 -0.1801 0.1774 -0.5690 8.9472 -0.0391 -0.0616 0.0698
vwMKT 39.2019 0.1686 -0.1785 0.1244 -0.4466 7.4296 -0.0347 -0.0531 0.0930
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Table 3: Descriptive analysis of realized portfolio returns. The columns report the cumulated returns obtained in each
year during the period 1977-2014, the annualized average monthly return and annualized variance, the minimum and
maximum monthly returns, the skewness and kurtosis indices computed on weekly returns, the 5% value-at-risk and
expected shortfall, and the Sharpe ratio. We report the rational agent (GSR) and the rational learner agent (RL).
For the market we include the equally weight market index (ewMKT) and the value weighted market index.

cum.rets std.ann VaR ES Sharpe

1977 GSR -0.0160 0.1329 -0.0241 -0.0276 -0.0429
RL -0.0076 0.1572 -0.0291 -0.0339 -0.0106

ewMKT 0.0009 0.1547 -0.0281 -0.0336 0.0124
vwMKT -0.0179 0.1459 -0.0268 -0.0286 -0.0431

1978 GSR 0.0606 0.1485 -0.0330 -0.0459 0.0651
RL 0.0311 0.1896 -0.0421 -0.0749 0.0357

ewMKT 0.0525 0.1721 -0.0336 -0.0602 0.0532
vwMKT 0.0628 0.1595 -0.0350 -0.0468 0.0639

1979 GSR 0.1661 0.1229 -0.0208 -0.0386 0.1821
RL 0.3746 0.1729 -0.0325 -0.0520 0.2679

ewMKT 0.2775 0.1457 -0.0259 -0.0452 0.2437
vwMKT 0.1939 0.1296 -0.0242 -0.0366 0.1988

1980 GSR 0.1401 0.1576 -0.0350 -0.0413 0.1263
RL 0.5085 0.2288 -0.0542 -0.0588 0.2657

ewMKT 0.3430 0.1942 -0.0409 -0.0492 0.2244
vwMKT 0.3922 0.2019 -0.0383 -0.0537 0.2417

1981 GSR 0.0090 0.1345 -0.0316 -0.0329 0.0184
RL -0.1227 0.2175 -0.0544 -0.0646 -0.0686

ewMKT -0.0993 0.1711 -0.0475 -0.0522 -0.0730
vwMKT -0.1404 0.1669 -0.0410 -0.0474 -0.1142

1982 GSR 0.2119 0.1960 -0.0309 -0.0341 0.1467
RL 0.0706 0.2779 -0.0512 -0.0574 0.0521

ewMKT 0.0783 0.2337 -0.0411 -0.0466 0.0596
vwMKT 0.1076 0.2294 -0.0396 -0.0470 0.0760

1983 GSR 0.2338 0.1105 -0.0201 -0.0240 0.2717
RL 0.2249 0.1805 -0.0356 -0.0526 0.1684

ewMKT 0.1861 0.1339 -0.0286 -0.0361 0.1861
vwMKT 0.1941 0.1327 -0.0237 -0.0326 0.1947

1984 GSR -0.0041 0.1447 -0.0284 -0.0324 0.0058
RL -0.1670 0.2331 -0.0466 -0.0484 -0.0930

ewMKT -0.0768 0.1705 -0.0355 -0.0377 -0.0535
vwMKT -0.0170 0.1528 -0.0291 -0.0349 -0.0053
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cum.rets std.ann VaR ES Sharpe

1985 GSR 0.3493 0.0986 -0.0173 -0.0221 0.4291
RL 0.2157 0.1505 -0.0298 -0.0376 0.1905

ewMKT 0.2195 0.1175 -0.0225 -0.0275 0.2427
vwMKT 0.2657 0.1086 -0.0189 -0.0245 0.3089

1986 GSR 0.2247 0.1555 -0.0365 -0.0502 0.1918
RL 0.0823 0.1757 -0.0420 -0.0583 0.0747

ewMKT 0.1179 0.1570 -0.0375 -0.0521 0.1094
vwMKT 0.1643 0.1641 -0.0409 -0.0545 0.1400

1987 GSR -0.0009 0.2300 -0.0634 -0.0919 0.0157
RL -0.1230 0.3042 -0.0809 -0.1254 -0.0376

ewMKT -0.0628 0.2794 -0.0761 -0.1175 -0.0120
vwMKT 0.0234 0.2511 -0.0708 -0.1002 0.0305

1988 GSR 0.1299 0.1253 -0.0284 -0.0322 0.1412
RL 0.0514 0.1249 -0.0297 -0.0352 0.0631

ewMKT 0.1094 0.1316 -0.0314 -0.0343 0.1164
vwMKT 0.0690 0.1475 -0.0320 -0.0371 0.0716

1989 GSR 0.2121 0.1096 -0.0275 -0.0354 0.2513
RL 0.1949 0.1203 -0.0281 -0.0435 0.2139

ewMKT 0.1693 0.1189 -0.0291 -0.0437 0.1909
vwMKT 0.2672 0.1299 -0.0309 -0.0420 0.2623

1990 GSR -0.1417 0.1505 -0.0401 -0.0452 -0.1303
RL -0.2109 0.1927 -0.0544 -0.0592 -0.1568

ewMKT -0.1704 0.1791 -0.0453 -0.0534 -0.1321
vwMKT -0.0517 0.1630 -0.0405 -0.0449 -0.0340

1991 GSR 0.2352 0.1212 -0.0191 -0.0211 0.2503
RL 0.2963 0.1765 -0.0301 -0.0306 0.2163

ewMKT 0.3167 0.1568 -0.0227 -0.0248 0.2545
vwMKT 0.2842 0.1393 -0.0235 -0.0256 0.2589

1992 GSR 0.1269 0.0868 -0.0153 -0.0183 0.1969
RL 0.1050 0.1178 -0.0226 -0.0231 0.1256

ewMKT 0.1187 0.1070 -0.0198 -0.0213 0.1528
vwMKT 0.0850 0.0940 -0.0206 -0.0215 0.1269
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cum.rets std.ann VaR ES Sharpe

1993 GSR 0.0735 0.0675 -0.0119 -0.0173 0.1476
RL 0.1248 0.1131 -0.0213 -0.0292 0.1494

ewMKT 0.1019 0.0848 -0.0164 -0.0225 0.1617
vwMKT 0.0512 0.0802 -0.0178 -0.0228 0.0901

1994 GSR -0.0113 0.0837 -0.0252 -0.0283 -0.0131
RL -0.0152 0.1393 -0.0357 -0.0429 -0.0057

ewMKT -0.0137 0.1164 -0.0297 -0.0391 -0.0085
vwMKT 0.0126 0.1011 -0.0239 -0.0307 0.0241

1995 GSR 0.2590 0.0622 -0.0111 -0.0154 0.5186
RL 0.3423 0.1116 -0.0177 -0.0239 0.3743

ewMKT 0.2980 0.0866 -0.0191 -0.0195 0.4244
vwMKT 0.3574 0.0716 -0.0106 -0.0120 0.5985

1996 GSR 0.1502 0.1033 -0.0205 -0.0233 0.1951
RL 0.1944 0.1334 -0.0284 -0.0344 0.1940

ewMKT 0.1593 0.1190 -0.0199 -0.0284 0.1805
vwMKT 0.2605 0.1306 -0.0241 -0.0255 0.2552

1997 GSR 0.2380 0.1162 -0.0190 -0.0244 0.2632
RL 0.1254 0.1563 -0.0303 -0.0420 0.1155

ewMKT 0.1599 0.1432 -0.0271 -0.0393 0.1535
vwMKT 0.2632 0.1567 -0.0301 -0.0326 0.2178

1998 GSR -0.0107 0.1645 -0.0385 -0.0464 0.0021
RL 0.0080 0.2704 -0.0747 -0.0891 0.0227

ewMKT 0.0234 0.2376 -0.0567 -0.0684 0.0297
vwMKT 0.3595 0.1960 -0.0486 -0.0535 0.2312

1999 GSR 0.0000 0.1430 -0.0294 -0.0377 0.0097
RL 0.4048 0.1727 -0.0379 -0.0436 0.2803

ewMKT 0.1831 0.1504 -0.0341 -0.0407 0.1627
vwMKT 0.2795 0.1807 -0.0402 -0.0460 0.1982

2000 GSR 0.1012 0.1656 -0.0319 -0.0374 0.0920
RL -0.0980 0.3147 -0.0600 -0.0978 -0.0235

ewMKT 0.0106 0.2210 -0.0432 -0.0628 0.0217
vwMKT -0.0085 0.2334 -0.0456 -0.0717 0.0109
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cum.rets std.ann VaR ES Sharpe

2001 GSR 0.0989 0.1731 -0.0247 -0.0629 0.0878
RL -0.0700 0.2974 -0.0576 -0.0998 -0.0129

ewMKT 0.0283 0.2508 -0.0439 -0.0890 0.0332
vwMKT -0.0590 0.2272 -0.0413 -0.0763 -0.0213

2002 GSR -0.0364 0.1449 -0.0392 -0.0534 -0.0254
RL -0.2707 0.2237 -0.0609 -0.0643 -0.1798

ewMKT -0.2130 0.1950 -0.0571 -0.0633 -0.1565
vwMKT -0.2203 0.1934 -0.0481 -0.0635 -0.1648

2003 GSR 0.2961 0.1262 -0.0272 -0.0311 0.2942
RL 0.4651 0.1880 -0.0344 -0.0440 0.2955

ewMKT 0.4304 0.1707 -0.0337 -0.0415 0.3033
vwMKT 0.2882 0.1526 -0.0340 -0.0389 0.2410

2004 GSR 0.2073 0.1077 -0.0185 -0.0216 0.2458
RL 0.1619 0.1618 -0.0323 -0.0460 0.1374

ewMKT 0.1752 0.1525 -0.0281 -0.0422 0.1547
vwMKT 0.1371 0.1121 -0.0278 -0.0321 0.1637

2005 GSR 0.0159 0.1101 -0.0271 -0.0337 0.0273
RL 0.0618 0.1385 -0.0289 -0.0412 0.0695

ewMKT 0.0472 0.1360 -0.0309 -0.0425 0.0563
vwMKT 0.0548 0.0999 -0.0238 -0.0276 0.0809

2006 GSR 0.1677 0.1075 -0.0217 -0.0261 0.2076
RL 0.1357 0.1473 -0.0362 -0.0423 0.1300

ewMKT 0.1432 0.1422 -0.0360 -0.0399 0.1403
vwMKT 0.1323 0.1047 -0.0250 -0.0285 0.1718

2007 GSR -0.1148 0.1492 -0.0453 -0.0516 -0.1029
RL 0.0213 0.1714 -0.0467 -0.0565 0.0288

ewMKT -0.0422 0.1630 -0.0464 -0.0548 -0.0255
vwMKT 0.0487 0.1369 -0.0377 -0.0446 0.0575

2008 GSR -0.3845 0.3838 -0.0923 -0.1322 -0.1477
RL -0.5169 0.3918 -0.1140 -0.1386 -0.2285

ewMKT -0.4669 0.4194 -0.1229 -0.1445 -0.1778
vwMKT -0.4047 0.3348 -0.0857 -0.1217 -0.1903
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cum.rets std.ann VaR ES Sharpe

2009 GSR 0.3507 0.2878 -0.0539 -0.0823 0.1649
RL 0.2835 0.3380 -0.0663 -0.0808 0.1254

ewMKT 0.3556 0.3388 -0.0725 -0.0933 0.1480
vwMKT 0.3611 0.2644 -0.0494 -0.0634 0.1800

2010 GSR 0.1599 0.1652 -0.0440 -0.0512 0.1337
RL 0.2455 0.2277 -0.0633 -0.0735 0.1472

ewMKT 0.2216 0.2218 -0.0600 -0.0701 0.1383
vwMKT 0.1497 0.1783 -0.0452 -0.0557 0.1189

2011 GSR -0.0489 0.2278 -0.0612 -0.0702 -0.0150
RL -0.0651 0.2518 -0.0561 -0.0801 -0.0197

ewMKT -0.0837 0.2696 -0.0670 -0.0836 -0.0265
vwMKT -0.0234 0.2237 -0.0502 -0.0665 0.0006

2012 GSR 0.0653 0.1503 -0.0365 -0.0425 0.0687
RL 0.0791 0.1368 -0.0326 -0.0400 0.0866

ewMKT 0.0965 0.1503 -0.0361 -0.0438 0.0953
vwMKT 0.1039 0.1218 -0.0270 -0.0354 0.1209

2013 GSR 0.3599 0.1202 -0.0239 -0.0252 0.3639
RL 0.3497 0.1171 -0.0242 -0.0253 0.3641

ewMKT 0.3743 0.1204 -0.0240 -0.0265 0.3756
vwMKT 0.3022 0.1017 -0.0208 -0.0217 0.3677

2014 GSR 0.0637 0.1214 -0.0302 -0.0327 0.0789
RL 0.0659 0.1217 -0.0288 -0.0326 0.0811

ewMKT 0.0279 0.1339 -0.0323 -0.0378 0.0376
vwMKT 0.0997 0.1133 -0.0276 -0.0325 0.1241
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Appendix A. Portfolios’ Composition.
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Figure A.13: Portfolio’s composition according to the Industrial composition benchmark (ICB) Supersectors for the
rational agent (GSR). The considered period is 1977-2014 (weekly frequency).
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Figure A.14: Portfolio’s composition according to the Industrial composition benchmark (ICB) Supersectors for the
Fishburn agent (Z1). The considered period is 1977-2014 (weekly frequency).

33



Sep-77 May-81 Jan-85 Sep-88 May-92 Jan-96 Oct-99 Jun-03 Feb-07 Oct-10 Jun-14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Basic Materials
Consumer Goods
Consumer Services
Financials
Health Care
Industrials
Oil & Gas
Technology
Telecommunications
Utilities
Unidentified

Figure A.15: Portfolio’s composition according to the Industrial composition benchmark (ICB) Supersectors for the
S-shaped agent (Z2). The considered period is 1977-2014 (weekly frequency).
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Figure A.16: Portfolio’s composition according to the Industrial composition benchmark (ICB) Supersectors for the
agent endowed with the utility for disappointment theory (Z3). The considered period is 1977-2014 (weekly frequency).
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Figure A.17: Portfolio’s composition according to the Industrial composition benchmark (ICB) Supersectors for the
Farinelli-Tibiletti agent (Z4). The considered period is 1977-2014 (weekly frequency).
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