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Abstract

We model contagion in financial markets as a shift in the strength of cross-firm network linkages, and

argue that this provide a natural and intuitive framework to measure systemic risk. We take an asset

pricing perspective and dynamically infer the network structure system-wide from the residuals of an oth-

erwise standard linear factor pricing model, where systematic and systemic risks are jointly considered.

We apply the model to a large set of daily returns on blue chip companies, and find that high systemic

risk occurred across the period 2001/2002 (i.e. dot.com bubble, 9/11 attacks, financial scandals, Iraq

war), the great financial crisis, and the recent major Eurozone sovereign turmoil. Our results show that

financial firms are key for systemic risk management, and such network centrality does not depend on

market values. In addition, the empirical evidence suggests that those institutions with higher network

centrality, are more likely to suffer significant losses when aggregate systemic risk is larger. Consistent

with this evidence, our model-implied systemic risk measure provides an early warning signal on aggre-

gate financial distress conditions.
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1 Introduction

Conventional wisdom posits that contagion is central for systemic risk measurement and man-

agement. The financial crisis of 2007/2009 has shown that liquidity shocks, insolvency, and

losses can quickly propagate affecting institutions in different markets, with different sizes and

structures. Surprisingly, however, contagion and systemic risk remain rather elusive concepts, in

many respects poorly identified and inadequately measured. More deeply, anomalous patterns

of cross-sectional dependence are considered difficult even to identify, much less characterize

empirically.1

In this paper, we address this issue by taking an asset pricing perspective and develop a uni-

fied framework to identify channels of contagion in large dimensional time series settings, where

sources of systematic and systemic risks are not mutually exclusive. Our methodology directly

refers to the concept of network connectivity. Network analysis is omnipresent in modern life,

from Twitter to the study of the transmission of virus diseases. Broadly speaking, a network

represents the interconnections of a large multivariate system, and its graph representation can

be used to study the properties of the transmission mechanism of an exogenous shock (e.g.

patient zero). We remain agnostic as to how network connectedness arises; rather, we take it

as given and seek how to capture it correctly for systemic risk measurement purposes.

For a given linear factor model, we model contagion as a shift in the strength of the cross-

firm network linkages, which are inferred system-wide from the covariance structure of the

model residuals. This is consistent with the common definition of contagion as a significant

and potentially persistent increase in the strength of firms connectedness.2 Also, by looking

at the model residuals, we allow sources of systematic and systemic risk to coexist, such that

firm-specific exposures to systematic risks directly depend on the level of aggregate network

connectivity (see e.g. Ahern 2015).

This paper builds on a recent literature advocating the use of network analysis in eco-

1See among others Forbes and Rigobon (2000), Forbes and Rigobon (2002) and Corsetti, Pericoli, and Sbra-
cia (2005), Adrian and Brunnermeier (2010), Acharya, Pedersen, Phillippon, and Richardson (2011), Corsetti,
Pericoli, and Sbracia (2011), Billio, Getmansky, Lo, and Pelizzon (2012), Bekaert, Ehrmann, Fratzscher, and
Mehl (2014), Barigozzi and Brownlees (2014), Diebold and Yilmaz (2014), just to cite a few.

2See Forbes and Rigobon (2000) for a discussion of pros and cons of alternative definitions of contagion.
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nomics and finance to make inference on the connectedness of institutions, sectors and countries,

such as Allen and Gale (2000), Goyal (2007), Jackson (2008), Easley and Kleinberg (2010),

Billio et al. (2012), Hautsch, Schaumburg, and Schienle (2012), Ahren and Harford (2014),

Barigozzi and Brownlees (2014), Diebold and Yilmaz (2014),Timmermann, Blake, Tonks, and

Rossi (2014), Ahern (2015), and Diebold and Yilmaz (2015). In particular, Billio et al. (2012)

and Diebold and Yilmaz (2014) show that the strength of connectedness of financial institutions

changed over time, substantially increasing across market turmoils. In the spirit of Diebold and

Yilmaz (2014), we provide a unified framework to empirically measure systemic risk via direct

inference on unobservable cross-firm linkages.

We take steps from this literature in several important directions. We propose a joint infer-

ence scheme on both the network structure and the model parameters in a single step. Standard

empirical methodologies are based on pairwise correlation and Granger causality to build the

economic network; these measures tend to overestimate the number of linkages and are tied to

linear Gaussian models making them of limited value for systemic risk management purposes

in dynamic financial-market contexts (see e.g. Forbes and Rigobon 2000, Ahelegbey, Billio, and

Casarin 2014, and Diebold and Yilmaz 2014). In this paper, we propose a system-wide infer-

ence scheme based on an underlying undirected graphical model, that allows to simultaneously

consider all of the possible linkages among institutions in a large dimensional network.3

Also, we fully acknowledge the fact that parameters are uncertain. Existing methodologies

extract the network structure assuming the parameters of the model are constant in repeated

samples. As a result, the derived inference is thus to be read as contingent on the econometrician

having full confidence in his parameters estimates, which is objectively rarely the case. Yet,

alternative conceivable values of the parameters will typically lead to different networks. In this

paper, we provide a robust finite-sample Bayesian estimation framework which helps generate

posterior distribution of virtually any function of the model parameters, as well as sufficient

statistics for the underlying economic network. Such posterior estimates allow to test hypothesis

on the nature and structure of the network linkages in a unified setting, which the earlier

literature did not provide. Following previous research, we take into account the fact that

3See Whittaker (1990); Dawid and Lauritzen (1993), Lauritzen (1996), Carvalho and West (2007), Wang and
West (2009) and Wang (2010) for more detailed discussions on graphical models and their applications.
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contagion is more a shift concept than a steady state (e.g. Forbes and Rigobon 2000, Billio

et al. 2012 and Diebold and Yilmaz 2014). Based on this intuition we suggest the presence of

two distinct unobserved states driving network connectivity. Consistently, we label these two

states as “high” and “low” systemic risk.

Empirically, the paper focuses on a set of 100 blue-chip companies from the S&P100 Index.

We consider those institutions with more than 15 years of historical data. We are left with 83

firms. Returns are computed on a daily basis, dollar-valued and taken in excess of the risk-free

rate. The sample is 10/05/1996-31/10/2014 (4821 observations for each institution), for a total

of more than 400,000 firm-day observations. Our emphasis on stock returns is motivated by the

desire to incorporate the most current information for systemic risk measurement; stocks returns

reflect information more rapidly than non-trading-based measures such as accounting variables,

deposits, credits and loans, especially considering such information is mostly not available on a

daily frequency.

We also consider the impact of common sources of systematic risk such as, for instance, the

return of aggregate financial wealth in excess of the T-Bill rate, i.e. the CAPM. As recently

pointed out in Bekaert et al. (2014), specifying a factor model does not imply that we take a

stand on the mechanism that transfer fundamentals shocks into cross-sectional dependence. Of

course, given its residual nature, any statements on systemic risk will be conditional on a correct

specification of the factor model. Our methodology is rather general and can be applied to any

linear factor pricing model. To mitigate the model selection bias we consider other popular

theory-based factor pricing models. In addition to the CAPM, we consider the three-factor

model proposed by Fama and French (1993), and an implementation of the Merton (1973)

intertemporal extension of the CAPM (I-CAPM) including shocks to aggregate dividend yield

and both default- and term-spreads as state variables, in addition to aggregate wealth (see

Petkova 2006). The results are robust across different factor model specifications. Data are

from the Center for Research in Security Prices (CRSP), the FredII database of the St. Louis

Federal Reserve Bank and Kenneth French’s website. The data for the 1-month T-Bill are taken

from Ibbotson Associates.

Our empirical findings show that high systemic risk characterized financial markets across
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the period 2001/2002 (i.e. dot.com bubble, 9/11 attacks, Financial scandals, Iraq war), the

great financial crisis of 2008/2009, and the recent major Eurozone sovereign turmoil. Few

financial firms such as JP Morgan, Bank of America and Bank of New York Mellon turns out

to play a key role for systemic risk management, as they heavily outweigh other firms within

the economic network. This pattern holds also at the industry level, with industries classified

according to the Global Industry Classification Standard (GICS) developed by MSCI. In fact,

while the Energy sector is key within periods of low systemic risk, the financial sector plays a

crucial role globally when the aggregate network connectivity is high. This evidence is in line

with Barigozzi and Brownlees (2014) and Diebold and Yilmaz (2014).

One possible explanation is the fact that financial institutions typically lend capital to

other firms, hence the nature of their relationships with other institutions is more systemic

by definition. Also, by operating in non-traditional businesses, banks and insurances may

have taken on risks more than firms that operates in less risky sectors such as, for instance,

durables and industrials. Yet another possible explanation is that as financial firms tend to be

more regulated, they are more sensitive to regulatory changes in capital requirements that may

sensibly generate endogenous negative externalitites to other institutions, e.g. credit crunch.

Building on these results, we formally test the existence of any significant relationship between

the network centrality of each institution and the corresponding market value across regimes. A

simple cross-sectional regression analysis and rank-correlation coefficients show that firms that

are central in the economic network do not have the highest average market value.

Interestingly, we show that both unexplained returns and exposures to sources of systematic

risks changes across different regimes of aggregate network connectivity. For instance, the

Jensen’s alpha on financial firms tend to be lower when aggregate systemic risk is high, which

corresponds to an increase in the exposures to market risk. Similarly, firm-specific value betas

increase in a regime of high connectedness at the aggregate level. Yet, we provide evidence

that companies with higher network centrality, are more likely to suffer significant losses when

aggregate systemic risk is larger. In this respect, our network centrality measure is similar

to the marginal expected shortfall (MES) originally proposed by Acharya et al. (2011), which

tracks the sensitivity of firm ith’s return to a system-wide extreme event, thereby providing a

market-based measure of firms fragility. Finally, by using a Probit regression analysis we show
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that our model-implied aggregate systemic risk measure significantly predicts financial distress

measured by the Financial Stress Index held by the St.Louis Fed, providing an early warning

indicator to regulators and the public.

The remainder of the paper proceeds as follows. Section 2 lays out the model. Section 3

discusses the data, the prior elicitation and reports the main empirical results. The relationship

between systemic risk, value losses and aggregate financial distress is investigated in Section 4.

Section 5 concludes. We leave to the Appendix derivations details and simulation results.

2 Network Connectivity and Systemic Risk

Although a unique definition is missing, systemic risk is commonly related to the concept of

network connectivity. The reason why network analysis and systemic risk can be effectively

seen as two sides of the same coin can be understood through a simple mean-variance portfolio

allocation example. Let wt be the N−dimensional vector of weights representing the ratio

between the firms market values and the aggregate index, and defines σ2sys = w′
tΣtwt as the

overall risk of the system, with Σt the N×N cross-sectional covariance structure at time t. The

marginal contribution of each institution to aggregate systemic risk can then be characterized

as;

∂Ωt

∂wi,t
= 2wi,tσ

2
i,t + 2

N
∑

j>i

σij,twj,t, i = 1, ..., N t = 1, ..., T (1)

with wi,t the market value of the ith institution, σ2i,t its specific risk, and linkages with other in-

stitutions measured by covariance terms σij,t. Assuming observable the relative market weights,

network analysis aims to effectively capture firms connectedness, namely, correctly identify those

linkages which are significantly determining the systemic importance of the ith institution. Any

dynamic network can be described as a sequence of N ×N adjacency matrices, At, t = 1, . . . , T ,

each consisting of N unique “nodes” which are connected through “edges”. Each entry in the

adjacency matrix At, denoted aij,t , for row i and column j, records the existence of linkage
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between institution i and j;

aij,t =

{

1 if i and j are connected at time t

0 otherwise
(2)

Intuitively, At allows to compute firm-specific systemic risk contributions based on direct con-

nections a firm has and to which other firms these connections are made. Thus, combining the

marginal risk contribution (1) and the network representation (2), the systemic importance of

the ith firm can be defined as a direct function of the cross-firm linkages characterized by At;

∂Ωt

∂wi,t
= 2wi,tσ

2
i,t + 2

N
∑

j>i

aij,tσij,twj,t,

= 2wi,tσ
2
i,t + 2

∑

j∈N(i,t)

σij,twj,t, i = 1, ..., N, t = 1, ..., T (3)

where N(i, t) the set of “neighbours” linked to the ith institution. Existing methods identify

the economic network based on conditional covariances (e.g. Adrian and Brunnermeier 2010,

Acharya et al. 2011, Engle and Kelly 2012, and Brownlees and Engle 2015), and Granger causal-

ity (e.g. Billio et al. 2012 and Barigozzi and Brownlees 2014). Although widespread, tend to

overestimate the number of linkages and are tied to linear Gaussian models making them of

limited value for systemic risk management purposes in dynamic financial-market contexts.

More recently, Diebold and Yilmaz (2014) proposed a variance-decomposition based method-

ology to obtain system-wide inference on network connectedness. The common theme among

these closely related measures is that systemic risk is a direct function of either the existence of

cross-firm linkages or the magnitude of conditional covariance terms. In other words, systemic

risk measures focus on estimating either the adjacency matrix At or the covariance structure

Σt, separately, or one conditional to the other. Also, inference on the network connectedness is

typically built conditional on assuming parameter estimates are constant in repeated samples.

To address this situation, we propose a unified setting to make inference both on the network

structure At and the covariance terms Σt, jointly. The main advantage of this approach is that

it allows to characterize a weighted network where the weights are given by the estimated

covariance terms. This is done in a single step as both the linkages aij,t and the covariances
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σij,t are sampled from the same joint conditional distribution. As such, we can characterize

a sequence of N × N “weighted” adjacency matrices, Ãt, t = 1, . . . , T , in which each entry,

denoted ãij,t , for row i and column j, records not only the existence, but also the magnitude

σij,t of the linkage between institution i and j;

ãij,t =

{

σij,t if i and j are connected at time t

0 otherwise
(4)

Figure 1 shows an example of this weighted network structure. Circles indicate the node and

the lines are the edges between nodes. In this example, the neighbours of node 5 are nodes 4

and 6, and the weights of the associated connections are given by the covariance terms σ45 and

σ56.

[Insert Figure 1 about here]

Hence, systemic risk is the compounding effect of the number of linkages and their inherent

magnitude. Figure 1 shows that conditional on node 4, the sub-graph (4, 5, 6) is separated from

the rest of the economy. This means that node 4 is more systemically important than, say, node

5 for the transmission mechanism of exogenous shocks as the set of neighbours (2, 5, 6) is larger.

The clique (7, 8) is instead separated from the rest of the economy. This implies that node 7

and 8 play a minor role for systemic risk measurement purposes.4

Our model builds on Graph theory. A graph is a statistical model defined by the pair (V,Et)

where V is the vertex set of N elements (institutions) and Et defines the edge-set, i.e. the set

of cross-firm linkages. If Gt = (V,Et) is an undirected graph and Xt, t = 1, . . . , T , a general

multi-variate normal random process, we can model the covariance structure Σt, by considering

its restrictions imposed by the network structure Gt; namely, the covariance structure has off-

diagonal zeros corresponding to conditional orthogonality among the elements of the vector of

exogenous shocks.5 As explained below, both Gt and Σt are estimated jointly.

4A clique is a complete sub-graph that is not contained within another complete sub-graph. In this graph
{(1, 2, 3), (4, 5, 6), (7, 8)} is the set of cliques and {(2, 4)} the separator set.

5Graphical structuring of multivariate time series is often referred as to Gaussian graphical modeling (see
Erdös and Rényi 1959, Dempster 1972, Dawid and Lauritzen 1993 and Giudici and Green 1999 for more details).
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2.1 A Markov Regime-Switching Factor Pricing Approach

Recent theory posits that systemic risk reduces the benefit of diversification (see e.g. Das and

Uppal 2004 and Haldane and May 2011), and can be seen as a source of aggregate risk that can

not be easily diversified away (see Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi 2012).6

In this respect, network connectedness can be thought of as a particular source of systematic

risk (see Ahern 2015 for a related discussion). Consider a liquidity shock for example. First a

firm can not repay a loan to a bank, then banks have higher costs for credit lines and loans in

generals, and later, other firms can no longer afford refinancing through bank loans. The shock

originates at the firm level, then spreads through lending relationships to form an aggregate

shock at the market level. However, although systematic and systemic risk can be thought of

as substitutes, it is not clear how systemic risk can be hedged as conveys the risk of a collapse

of the economic system as a whole. To avoid any potential mispecification of the model, here

we assume that systemic and systematic risks coexist. More deeply, we assume that these are

not mutually exclusive as the level of exposures to, for instance, market risk directly depends

on the level of aggregate network connectivity. We consider different sources of systematic risks

and infer the weighted network structure from the residuals of an otherwise standard linear

multi-factor asset pricing model (e.g. Bekaert et al. 2014).

We assume systematic risk factors are common across institutions, and consider a seemingly

unrelated regression (SUR) model. Let yit represents the excess returns on the ith institution

at time t, and xit the ni-dimensional vector of systematic risk factors with possibly a constant

term for individual i at time t ; the model dynamics can be summarized as

yt = X ′
tβ̃t + εt, εt ∼ NN

(

0, Σ̃t

)

(5)

t = 1, . . . , T , where yt = (y1t, . . . , yNt)
′ is a N -dimensional vector of returns in excess of the risk-

free rate, Xt = diag{(x′
1t, . . . ,x

′
Nt)} a p×N matrix of explanatory variables plus intercept, with

p =
∑N

i=1 ni, εt = (ε1t, . . . , εNt)
′ the vector of normal random errors, and β̃t =

(

β̃1t, . . . , β̃Nt

)′

the p−dimensional vector of betas at time t. The dynamics described in (5) is fairly general

6In particular, Haldane and May (2011) show that although individually rational from a risk perspective,
diversification comes at the expense of lower diversity across the economic system, thereby increasing systemic
risk, namely the effect of a firm-specific exogenous shock on other firms.
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since represents an approximation of a reduced-form stochastic discount factor where the risk

factors are assumed to capture business cycle effects on investors’ beliefs and/or preferences

(see Liew and Vassalou 2000, Cochrane 2001, and Vassalou 2003).

The variance-covariance matrix Σ̃t is consistent with the restrictions implied by the under-

lying undirected graph Gt, and thus reflects the level of network connectivity at time t.7 In

the conditional Gaussian set up implied by (5), zeros in the covariance matrix simply express

conditional independence restrictions. Thus, it can be showed that Σt belongs to M(Gt), the

set of all positive-definite symmetric matrices with elements equal to zero for all (i, j) /∈ Et

(e.g. Carvalho and West 2007). We assume that the vector of exposures to systematic risks

β̃t, the covariance matrix Σ̃t, and the network Gt have a Markov regime-switching dynamics.

They are driven by an unobservable state st ∈ {1, . . . ,K}, t = 1, . . . , T , that takes a finite

number K of values and represents network system-wide connectedness, namely systemic risk.

Such state st evolves as a Markov chain process, where the transition probability πij , of going

from the ith to the jth state in one step is time-invariant (see, e.g. Hamilton 1994), that is

P (st = i|st−1 = j) = πij , i, j = 1, . . . ,K, for all t = 1, . . . , T .

The choice of a Markov regime-switching dynamics is motivated by the common defini-

tion of contagion as abrupt increase in the cross-sectional dependence structure of institu-

tions/sectors/countries after a shock (e.g. Forbes and Rigobon 2000). Also, the Markov regime-

switching nature of the covariance structure allows to acknowledge the heteroskedasticity bias

highlighted in Forbes and Rigobon (2002).8 As typical in SUR models we assume that the

exogenous shocks are possibly contemporaneously correlated, but not autocorrelated, i.e. we

assume the graph structure Gt is undirected. The Markov-switching graphical model specifica-

tion in equation (5) makes the exposures to sources of systematic risk time varying and directly

7Given the residual nature of systemic risk with respect to sources of systematic risk, we assume the graph
is undirected, meaning there is no particular direction in the conditional dependence structure among firms.
However, directed graphical models can be also accomplished within our modeling framework and we leave that
for future research.

8Markov regime-switching models are popular in the finance literature since Ang and Bekaert (2002), Guidolin
and Timmermann (2007), and Guidolin and Timmermann (2008), as they allows for both statistical identification
and economic interpretation of different market phases.
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depending on the regime of systemic risk;

β̃t =
K
∑

k=1

βkI{k}(st) (6)

with I{k} (st) the indicator function which takes value one when the state st takes value k at time

t and zero otherwise. The state-specific covariance matrix Σk is constrained by a sate-specific

graph Gk, that is

Σ̃t =
K
∑

k=1

Σk (Gk) I{k}(st), G̃t =
K
∑

k=1

GkI{k}(st) (7)

with Σk ∈ M(Gk) and M(Gk) the set of all positive-definite symmetric matrices with elements

equal to zero for all (i, j) /∈ E, given the state st = k. In the model, contagion is generated by

both the number of edges in G̃t when st = k, and the magnitude of the dependence between

nodes measured by the covariance terms. Traditional connectedness measures do not distinguish

between these two sources and therefore may result in biased estimates. Also, the features of

the state-specific graph Gk play a crucial role in the estimation of our regime-switching model,

since they allow us to identify the regimes of low and high systemic risk exposure.

2.2 Network Connectivity Measures

In this paper, we assume that a connectivity measure q = h(Gk) is a map function h from the

graph space G to the set of the real numbers Q ⊂ R. These measures can be used to measure

risk relying on the network structure and to identify systemic risk regimes. Different concentra-

tion measures have been proposed to characterize network connectivity. These include average

degree, closeness, betweenness, and eigenvector centrality. To use the correct measure for sys-

temic risk purposes, we must first consider the consistency of the assumptions underlie each

measure with the concept of systemic risk. Although making generalization of the propagation

mechanism of exogenous shocks is problematic, one can make few reasonable assumptions about

how shocks can flow from one firm to another within the economic system.

First, regardless of the inherent definition of an economic shock, they are unlikely to follow

a geodesic pattern (the shortest path between two nodes). Only shocks with known destination
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follow the shortest possible distance (e.g. tag a recipient with twitter). Economic shocks are

unlikely to be restricted to follow specific paths but likely have feedback effects. For instance,

a liquidity shock on a single firm could affect the ability to repay a loan to a bank, that could

prevent the bank to allow for credit line to another firm, that in turns can no longer afford

to pay for supply debits, which eventually could flaw back to the original firm if there is a

trade relationship. According to Borgatti (2005), this means that closeness and betweenness

centrality are inappropriate for economic shocks since they implicitly assume a pre-determined

path.

Second, linkages among firms are not all equal. Firms in large sectors such as “industrials”

are likely highly connected to other firms through supply relationships. This implies that the

average number of linkages of the industrial sector could be high by definition. However, this

does not imply that a supply shock to Fedex necessarily spread to the economic system quicker

than a liquidity shock to JP Morgan. This rules out average degree centrality. Indeed, such

measure gives a simple count of the number of connections a company has, without effectively

discriminating the relative importance of these connections with respect to the whole network.

Based on these assumptions, eigenvector centrality is the most appropriate connectivity

measure. Such measure is closely related to “PageRank” used in web search engines and ac-

knowledges the fact that cross-firms connections are not all equal, considering the actual influ-

ence of a company in the economic network. For the ith firm eigenvector centrality is defined

to be proportional to the sum of centralities of the vertex’s neighbours, so that the firm can

acquire higher centrality by being connected to a lot of other firms or by being connected to

others that themselves are highly central;

xi,k =
1

λk

n
∑

j=1

aij,kxj,k =
1

λk

∑

j∈N(i,k)

xj,k (8)

where N(i, k) ⊂ V the set of neighbours of i given the state st = k, that is N(i, k) = {j ∈ V :

aijk = 1}. Equation (8) can be rewritten in a more compact form as Akxk = λkxk, such that

qE,k = xj∗,k, with Ak the adjacency matrix defined as in (2) for st = k, x = (x1, x2, . . . , xp), and

j∗ = argmax{λj , j = 1, . . . , n} is the index corresponding to the greatest Laplacian eigenvalue,
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λj , j = 1, . . . , n, are the Laplacian eigenvalues.9 For this measure Q = R with larger values

indicating higher centrality. Firm-specific eigenvector centrality can be generalized at the in-

dustry level by averaging xi,k within a certain industry. For instance, the average eigenvector

centrality for the financial sector can be approximated as

xf,k =
1

nf

∑

i∈Vf

xi,k (9)

with nf = |Vf |, and Vf ⊂ V the set of nodes associated to firms classified as “financials”

according to the GICS. If the adjacency matrix has non-negative entries, a unique solution is

guaranteed to exist by the Perron-Frobenius theorem. In addition to the standard eigenvector

centrality (8), we propose a weighted centrality measure based on the modified adjacency matrix

Ãt explained above; for the ith institution the covariance weighted centrality measure can be

computed by solving the system Ãkx̃k = λkx̃k, such that

x̃i,k =
1

λk

n
∑

j=1

ãij,kx̃j,k =
1

λk

n
∑

j=1

aij,kσij,kx̃j,k =
1

λk

∑

j∈N(i,k)

σij,kx̃j,k (10)

The intuition behind this weighted eigenvector centrality can be seen by considering the marginal

contribution of a single firm to the overall systemic risk as a function of the quality of its connec-

tions with respect to other firms, and the magnitude of the linkages expressed by the covariance

terms as pointed out in equation (3). The number of connections still counts, but an institution

with a small number of strong connections may outrank one with a large number of mediocre

linkages. Our weighted measure can be generalized at the industry level by averaging out

x̃i,k within industries.10 Weighted eigenvector centrality is also related to a standard principal

component analysis (PCA) (see e.g. Billio et al. 2012). Just as PCA analysis our weighted eigen-

vector centrality measures identify the concentration of the economic system weighing for the

cross-sectional variance-covariance matrix of the firms. To summarize, our weighted eigenvector

centrality measure effectively characterize the importance of a firm in the network, conditional

not only on the quality of its linkages with the rest of the economy, but also conditional on the

9The Laplacian eigenvalues are the eigenvalues arranged in non-increasing order of the Laplacian matrix,
L = D−A, where D = diag{d1, . . . , dn} is a diagonal matrix with the vertex degree on the main diagonal. Here,
zj , j = 1, . . . , n, are the corresponding Laplacian eigenvectors.

10In the following we report the empirical results based on both eigenvector centrality measures. Results for
the degree centrality measure are available upon request.
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strength of the existing linkages. Equivalently, (10) measures not only the likelihood that an

exogenous shock transmits to the ith firm, but also the magnitude of the effect of the shock on

itself.

2.3 Inference on Networks and Parameters

Our estimation approach generalizes earlier literature and consider a joint inference scheme on

networks, covariances and factor model parameters in a large dimensional time series setting.

Given the fairly relevant complexity and non-linearity of the model, we opted for a Bayesian

estimation scheme of the network Gk and the structural parameters θk = (βk,Σk,πk), with πk

the kth row of the transition matrix Π for the latent state, st = k. Also, by using Bayesian tools

we can generate posterior distributions of virtually any sufficient statistics for the underlying

network, as well as for any of the structural parameters of the linear factor pricing model.

2.4 Prior Specification

For the Bayesian inference to work, we need to specify the prior distributions for the network

and the structural parameters. For a given graph Gk and state st = k the prior structure

is conjugate and the model dynamics (5) reduces to a standard SUR model (e.g., see Chib

and Greenberg 1995). This makes Bayesian updating straightforward and numerically feasible.

As far as the systemic risk state transition probabilities are concerned we choose a Dirichlet

distribution:

(πk1, . . . , πkK) ∼ Dir (δk1, . . . , δkL) (11)

with δki the concentration parameter for πki, and Πk = (πk1, ..., πkK) the kth row of the tran-

sition matrix Π. The role of the covariance structure Σk is one of the most important in

the SUR model specification. The non-diagonal structure of the residual covariance matrix

improves parameter estimation by exploiting shared features of the p−dimensional vector of

excess returns. However, an increasing p makes complexity unfeasible to be managed. In this

context we take advantage of natural restrictions induced by the network structure (Carvalho

and West 2007,Carvalho, West, and Massam 2007, and Wang and West 2009).
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The prior over the graph structure is defined as a Bernoulli distribution with parameter ψ

on each edge inclusion probability as an initial sparse inducing prior. That is, a p node graph

Gk = (Vk, Ek) with |Ek| edges has a prior probability

p(Gk) ∝
∏

i,j

ψeij (1− ψ)(1−eij)

= ψ|Ek| (1− ψ)T−|Ek| (12)

with eij = 1 if (i, j) ∈ Ek. This prior has its peak at Tψ hedges, with T = p(p − 1)/2 , for

an unrestricted p node graph, providing a flexible way to directly control for the prior model

complexity. A uniform prior alternative might be used. However as pointed out in Jones,

Carvalho, Dobra, Hans, Carter, and West (2005), a uniform prior over the space of all graphs

is biased towards a graph with half of the total number of possible edges. As the number

of possible graphs for a p node structure is, for large p, the uniform prior gives priority to

those models where the number of edges is quite large. To induce sparsity and hence obtain

a parsimonious representation of the interdependence structure implied by a graph, we choose

ψ = 2/(p− 1) which would provide a prior mode at p edges. Conditional on a specified graph

Gk and state st = k, we assume a conjugate prior distribution for Σk, that is:

Σk ∼ HIWGk
(dk, Dk) (13)

with dk and Dk respectively the degrees of freedom and the scale hyper-parameters, and HIW

representing the Hyper Inverse-Wishart distribution (see Dawid and Lauritzen 1993) for the

structured covariance matrix Σk. The density of the Hyper-inverse Wishart is given in Ap-

pendix. The prior for the betas is independent on the covariance structure,

βk ∼ Np (mk,Mk) (14)

with mk and Mk the location and scale hyper-parameters, respectively.11 The choice of the

prior hyper-parameters is discussed in Section 4. We also discuss extensively the sensitivity of

11Notice that the fact that priors for the covariance structure and the betas are independent does not mean they
are sample independently in the Gibbs sampler. Indeed, in the sampling scheme they are sampled conditionally
on each other iteratively, and therefore can be thought as coming from the same joint distribution asymptotically.
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posteriors with respect to priors settings in a separate online appendix.

2.5 Posterior Approximation

In order to find a Bayesian estimation of the parameters, the graphs and the latent states we

follow a data augmentation principle (see Tanner and Wong 1987) which relies on the complete

likelihood function, that is the product of the data and state variable densities, given the

parameters and the graphs. Let us denote with zs:t = (zs, . . . , zt), s ≤ t, a collection of

vectors zu. The collections of graphs and parameters are defined as G = (G1, . . . , GK) and

θ = (θ1, . . . ,θK), respectively, where θk = (βk,Σk,πk), k = 1, . . . ,K, are the state-specific

parameters. The completed data likelihood is

p (y1:T , s1:T |θ, G) =
K
∏

k,l=1

T
∏

t=1

(2π)−n/2 |Σ̃t|
−n/2 exp

(

−
1

2

(

yt −X ′
tβ̃t

)′
Σ̃−1
t

(

yt −X ′
tβ̃t

)

)

p
Nkl,t

kl

(15)

with Nkl,t = I{k} (st−1) I{l} (st). Combining the prior specifications (11)-(14) with the complete

likelihood (A.20), we obtain the posterior density

p (θ, G, s1:T |y1:T ) ∝ p (y1:T , s1:T |θ, G) p(θ, G) (16)

Since the joint posterior distribution is not tractable the Bayesian estimator of the parameters

and graphs cannot be obtained in analytical form, thus we approximate the posterior distri-

bution and the Bayes estimator by simulation. The random draws from the joint posterior

distributions are obtained through a Gibbs sampler algorithm (Geman and Geman 1984). We

propose a collapsed multi-move Gibbs sampling algorithm (see e.g. Roberts and Sahu 1997

and Casella and Robert 2004), where the graph structure, the hidden states and the parameter

are sampled in blocks. More specifically we combine forward filtering backward sampling (see

Frühwirth-Schnatter 1994 and Carter and Kohn 1994 for more details) for the hidden states,

an efficient sampling algorithm for the covariance structure (see Carvalho and West 2007, Car-

valho et al. 2007 and Wang and West 2009), and multi-move MCMC search for graph sampling

(see e.g. Giudici and Green 1999 and Jones et al. 2005). At each iteration the Gibbs sampler
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sequentially cycles through the following steps:

1. Draw s1:T conditional on θ, G and y1:T .

2. Draw Σk conditional on y1:T , s1:T , Gk and βk.

3. Draw Gk conditional on y1:T , s1:T and βk.

4. Draw βk conditional on y1:T , s1:T and Σk.

5. Draw πk conditional on y1:T , s1:T .

From step 2 to 3 the Gibbs sampler is collapsed as Gk is drawn without conditioning on Σk

since they are conditionally independent. In fact, the graph Gk is sampled marginalizing over

the covariance structure Σk (see Carvalho and West 2007, Carvalho et al. 2007 and Wang and

West 2009). A detailed description of the Gibbs sampler is given in the Appendix.

Inference on Markov-switching models, requires dealing with the identification issue aris-

ing from the invariance of the likelihood function to permutations of the hidden state vari-

ables. Different solutions to this problem have been proposed in the literature (see Frühwirth-

Schnatter 2006 for a review). In this paper, we contribute to this stream of literature providing

a way to identify regimes through graphs. More specifically we suggest to identify the regimes

by imposing the following constraints on the state-specific graphs. We consider the follow-

ing identification constraints on the intercept: q(G1) < . . . < q(GK), where q is the average

weighted eigenvector centrality, i.e. 1
N

∑N
i=1 x̃i,k for k = 1, ...,K. This constraint allows us to

interpret the first regime as the one associated with the lowest systemic risk level and the last

regime as the one associated with the highest risk. In context where the eigenvector centrality is

not sufficient to achieve a characterization of the regimes, then a complexity measure (see, e.g.

Newman 2003, Emmert-Streib and Dehemer 2012), which combines information from different

network measures, can be employed. From a practical point of view, we find in our empirical

applications that eigenvector centrality ordering works as well as degree centrality constraint

for the regime identification.

Given the prior distribution assumption and the Graphical model defined above, it is possible

to define a posterior distribution of the graph p(Gk|y1:T ) and to assess the statistical properties

of the network measures by employing the distribution defined by the transform q = h(Gk). We

develop a Gibbs sampling to generate samples from the graph posterior distribution, which can
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be used to approximate also the connectedness measure distribution;

pJ(qk|y1:T ) =
1

J

J
∑

j=1

δ
qjk
(qk) (17)

where qjk = h(G
(j)
k ) and G

(j)
k is the jth sample from the graph posterior distribution for the state

st = k, and J is the number of Gibbs iterations. Usually, once a graph is estimated the network

measure is applied to this graph, thus all information about graph uncertainty are lost. In this

paper we propose to account for the uncertainty associated with the graph Gk, and suggest the

following integrated measure and its MCMC approximation

∫

Gk

h(Gk)p(Gk|y1:T )dGk ≈

∫

Q
qk pJ(qk|y1:T )dqk

which is the empirical average of the sequence of measures qjk, j = 1, . . . , J , associated with the

MCMC graph sequence. As a whole, from the Bayesian scheme we can make robust hypothesis

testing on the network structure as we are able to approximate, at least numerically, the entire

distribution of networks conditioning on the state of contagion.

3 Empirical Analysis

As empirical application we measure systemic risk for a large set of companies. Systemic risk

is jointly considered with sources of systematic risk which are assumed to capture investors’

beliefs on the business cycle (see Liew and Vassalou 2000, Cochrane 2001, Vassalou 2003, and

Campbell and Diebold 2009). In particular, while the exposure to sources of systematic risk (i.e.

betas) depends on the state of systemic risk, the latter directly depends on the betas given its

residual nature. As such, although conditionally independent, systematic and systemic risks are

not mutually exclusive. The residual nature of systemic risk, implies that any statements will be

conditional on a correct specification of the factor model. In an attempt to mitigate a selection

bias for systematic risk factors we considered alternative theory-based leading factor pricing

model specifications. Clearly, our methodology is rather general and can be easily applied to

any linear factor pricing model.
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3.1 Data and Factor Pricing Models

We focus on the 100 blue chip companies that compose the S&P100 Index. We consider those

institutions with more than 15 years of historical available data at the daily frequency, for a total

of 83 companies. Table 1 summarize the firms in our dataset and the corresponding industry

classification according to the Global Industry Classification Standard (GICS), developed by

MSCI. Returns are dollar-valued and computed daily in excess of the risk-free rate. The sample

period is 05/10/1996-10/31/2014 (4821 observations for each company), for a total of more

than 400,000 firm-day observations. Our emphasis on stock returns is motivated by the desire

to incorporate the most current information in the network analysis; stocks returns reflect

information more rapidly than non-trading-based measures such as accounting variables.

[Insert Table 1 about here]

We analyse three representative asset pricing models starting from a conditional version of the

simple CAPM. Such model implies a unique risk factor which is represented by the excess return

(in excess of the 1-month T-Bill rate) on the aggregate value-weighted NYSE/AMEX/NASDAQ

index, taken from the Center for Research in Security Prices (CRSP). The return on the 1-month

T-Bill rate is taken from Ibbotson Associates.

The second model considered is the well-known three-factor model initially proposed in Fama

and French (1993). This model includes two empirically motivated additional systematic risk

factors. In addition to excess return on aggregate wealth as for the simple CAPM, the model

consists of a second risk factor, SMB, which represents the return spread between portfolios of

stocks with small and large market capitalization. The third risk factor, HML, represents the

return difference between “value” and “growth” stocks, namely portfolios of stocks with high

and low book-to-market ratios.

Next, we consider one macroeconomic-based model. The third model is an empirical im-

plementation of the Merton (1973) intertemporal extension of the CAPM. Based on Camp-

bell (1996), who argues that innovations in state variables that forecasts changes in investment

opportunities should serve as risk factors, we use aggregate dividend yield and both default-
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and term-spreads as state variables, in addition to aggregate wealth (see Petkova 2006). Default

spread is computed as the difference between the yields of long-term corporate Baa bonds and

long-term government bonds. The term spread is measured the difference between the yields

of 10- and 1-year government bonds. Data on bonds and treasuries are taken from the FredII

database of the Federal Reserve Bank of St.Louis.

We adopt the approach of Campbell (1996) and compute the changes in risk factors as the

innovations of a first order Vector Auto-Regressive (VAR(1)) process. Thus, for each collection

of the CRSP aggregate value-weighted market portfolio and the candidate set of risk factors

ht = (rm,t, x′t)
′, we estimate ht = B0+B1ht−1+et for t = 1, . . . , T . Following Petkova (2006),

the innovations et are orthogonalized from the excess return on the aggregate wealth and scaled

to have the same variance.

3.2 Prior Choices and Parameters Estimates

Realistic values for different prior distributions obviously depend on the problem at hand. For

the transition mechanism of systemic risk the prior hyper-parameters of the Dirichlet distribu-

tion are taken such that a priori systemic risk is persistent. Such prior belief is mainly based

on the common wisdom that increasing network connectedness is not a quickly mean-reverting

process (see e.g. Forbes and Rigobon 2002).

Given the large dimensional setting of the model, training the priors with firm-specific infor-

mation might be prohibitive. We take an agnostic perspective in setting the hyper-parameters

of the betas across institutions. The prior location parameter mk = 0 for each k = 1, ...,K.

The corresponding prior scale is set equal to Mk = 1000Ip across states. Notice we do not force

posterior estimates in any direction across states as the prior structure does not differ across

low vs high systemic risk states.

The prior degrees of freedom and scale of the Hyper-Inverse Wishart distribution for the

conditional covariance matrix are set to be dk = 3 and Dk = 0.0001Ip, respectively. This is

also a fairly vague, albeit proper, prior distribution. Finally, the prior for the graph space is

a Bernoulli distribution. We have chosen an hyper-parameter equal to ψ = 2/ (p− 1) which

would provide a prior mode at p edges. We could alternatively use a uniform prior over the
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space of all graphs. However as pointed out in Jones et al. (2005), a uniform prior would be

biased towards a graph with half of the total number of possible edges. For large p, the uniform

prior gives priority to those models where the number of edges is quite large. In a separate

online appendix we show that posterior results are not very sensitive to the prior settings for

the hyper-parameters that govern the prior conditional betas and covariances.

In order to further reduce the sensitivity of posterior estimates to the prior specification, we

use a burn-in sample of 2,000 draws storing every other of the draws from the residuals 10,000

draws (see e.g. Primiceri 2005). The resulting auto-correlations of the draws are very low. A

convergence analysis in Section B of the online Appendix shows that this guarantees accurate

inference in our network based linear factor model.

Figure 2 shows the probability of high systemic risk in the economy over the testing sample.

The gray area represents the model-implied probability, while the red line shows the NBER

recession indicator for the period following the peak of the recession to through the through. The

figure makes clear that a wide state of contagion characterizes the period 2001/2002 (i.e. dot.com

bubble, 9/11 attacks, Financial scandals, Iraq war), the great financial crisis of 2008/2009, and

the recent major Eurozone sovereign turmoil.

[Insert Figure 2 about here]

Although there is mis-matching with respect to the business cycle indicator across the period

1998-2002, the NBER recession and high systemic risk tend to overlap across the recent great

financial crisis. The last period of high systemic risk can be linked to the European sovereign

debt crisis. As we would expect such period does not coincide with any recession period in the

United States.

Figure 3 shows the persistence parameters for systemic risk for each of the factor pricing

model considered. The first three boxplot report the probability of staying in a state of low

systemic risk. The last three boxplot show the persistence of high systemic risk in the economy.

[Insert Figure 3 about here]
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Systemic risk persists with an average probability of πhh = 0.93, implying that the duration of

a period of high systemic risk is around 1/ (1− πhh) = 14 days, while the long run probability

of high systemic risk is equal to (1− πll) / (2− πhh − πll) = 0.33. This means that, in our

sample tend the economy tend to be affected by high systemic risk for about a third of trading

days, unconditionally. Figure 4 shows changes in abnormal returns and exposures to sources

of systematic risks from low to high systemic risk, computed from the Fama-French three-

factor model. For the sake of exposition, results are labeled according to the GISC industry

classification. Top left panel shows the difference in the intercepts across companies. The figure

makes clear that the Jensen’s alphas do not change across different regimes of systemic risk in

a significant way. Indeed, the zero line never falls outside the 95% confidence interval of the

model estimates. Interestingly, the differences in exposures to the aggregate wealth risk factor

is significantly negative for financial firms. This implies that the exposure to market risk of

financial firms increases when systemic risk is higher. The only exception within the financial

sector is the Berkshire Hathaway Inc. of Warren Buffett.

[Insert Figure 4 about here]

Similarly, financial firms are more exposed to value risk when systemic risk is higher. Two

exceptions are again Berkshire Hathaway Inc., together with Morgan Stanley. Also Citigroup,

although has negative difference on the HML beta, it is not statistically significant. The Indus-

trial and Materials sectors also show an increasing exposure to value premium when systemic

risk is higher. Figure 5 shows changes to the conditional betas on shocks to macroeconomic

risk factors in the I-CAPM implementation. As we would expect, the behavior of the betas on

market risk is consistent with the Fama-French three-factor model. The only exception is again

Berkshire Hathaway Inc., although the difference in the beta is negative, on average.

[Insert Figure 5 about here]

Interestingly, the Energy sector shows the opposite path with respect to Financials. In fact, the

exposure to market risk of energy stocks tend to be lower when systemic risk is higher. Bottom

left panel shows the change of exposures to default risk from low vs. high systemic risk. On

22



average, exposure to default risk is higher when systemic risk is higher, although for a large

fraction of the sample such negative delta is not statistically significant. In the financial sector,

AIG, Morgan Stanley, Bank of America, and American Express tend to be more exposed to

default risk when systemic risk increases. In the technology sector Microsoft, IBM, Intel and

Oracle are more exposed to default risk during market turmoils. Bottom right panel shows that

Energy and Financials are less exposed to the aggregate dividend yield when systemic risk is

high.

3.3 Financial Networks

Thus far we have introduced tools to measure systemic risk. We now put those tools at work and

investigate the evolution of networks connectedness over time. Figure 6 shows the connectivity

of firms inferred from the residuals of the CAPM. The size and the color of the nodes are

proportional to their relevance in the network measured by weighted eigenvector centrality

(10). The darker (bigger) the color (size) of the node, the higher its marginal contribution to

aggregate systemic risk.

[Insert Figure 6 about here]

Left panel shows the network in regime one. Figure 6 makes clear that Energy companies

such as ConocoPhillips (COP), Apache (APA), Occidental Ptl. (OXY), Exxon (XOM) and

Schlumberger (SLB) are central for the economic system when the aggregate systemic risk is

low. Interestingly, few consumer companies such as Wal Mart (WMT), Costco (COST), Target

(TGT), and Lowe’s (LOW) are tightly link to each other, although completely disconnected

from the rest of the economy. The financial sector turns out to be less relevant than the energy

sector. Financial firms such as JP Morgan (JPM), AIG, Bank of America (BAC) and Wells

Fargo (WFC), although present a significant weighted centrality, are not as relevant as, for

instance, Exxon Mobil.

Right panel of Figure 6 shows how the network structure changes when aggregate systemic

risk is high. The financial sector becomes a key factor in the transmission mechanism of ex-

ogenous shocks with firms such as JP Morgan and Citigroup playing a major role. Figure 2

and Figure 6 combined, confirm that during market turmoils, the systemic importance of the
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financial sector substantially increases. The marginal importance of each firm on the economic

system as a whole might be uniquely driven by their relative market size, or valuation. Figure 7

address this issue by showing the network connectivity measured from residuals of a the three-

factor Fama-French model which explicitly condition on size and book-to-market as aggregate

sources of systematic risks.

[Insert Figure 7 about here]

Left panel shows network connectivity when aggregate systemic risk is low. Figure 7 confirms the

key role of the Energy sector. Exxon (XOM) and Schlumberger (SLB) carry a relevant fraction

of systemic risk. Interestingly, by controlling for size and value, the role of the financial sector

when systemic risk is low decreases relatively to other sectors such as Healthcare and Materials.

Also, the economic network is now more sparse with lots of missing linkages. The energy and

the financial sectors seem to create a sub-network themselves. Consistent with Figure 6, right

panel of Figure 7 shows the key role of the financial sector in the network connectedness when

aggregate systemic risk increases.

Finally, Figure 8 shows the network computed from the residuals of the I-CAPM implemen-

tation including default and interest rate risks, in addition to aggregate wealth and dividend

yield. Left panel shows connectivity when aggregate systemic risk is low. The results confirm

what shown above. The Energy sector turns out to be most systemically important sector.

Interestingly, by conditioning on macroeconomic risk factors, Health Care becomes more im-

portant. Johnson & Johnson (JNJ) is as important as major firms of the Material sector.

Abbot Labs (ABT), Eli Lilly (LLY), and Merck & Company (MKR), are as important as Bank

of America (BAC), AIG, JP Morgan (JPM) and Wells Fargo (WFC) in terms of individual

contribution to aggregate systemic risk.

[Insert Figure 8 about here]

As shown in Figure 6, few consumer discretionary and staples companies such as Wal Mart

(WMT), Costco (COST), Target (TGT), Lowe’s (LOW) and CVS are tightly link to each other,

although disconnected from the rest of the economy. Similarly, Industrials such as 3M, United

Tech (UTX), Boeing (BA), Honeywell Intl. (HON), Union Pacific (UNP), and Caterpillar
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(CAT) are disjoint from the rest of the economy although highly relevant in terms of aggregate

systemic risk and connected to each other. Right panel shows the network connectedness when

aggregate systemic risk is high. The Energy and Health Care sectors decrease their relevance.

Financials such as Bank of America (BAC), AIG, JP Morgan (JPM), Wells Fargo (WFC),

Citigroup (C), and Bank of New York Mellon (BK) are now key for the transmission mechanism

of individuals exogenous shocks to the whole economy. Consumer discretionary and staples are

now connected to the rest of the economy through Procter & Gamble (PG). As a whole, Figures

6-8, together with Figure 2 make clear that Financials are systemically important when the

network connectivity is high. As such, as an exogenous shocks on these institutions can quickly

and heavily affect the entire economic system.

3.3.1 Firm-Level Network Centrality. We now focus our attention to the contribution

of single firms to aggregate systemic risk. Figure 9 shows the top 20 institutions ranked accord-

ing to their median weighted eigenvector centrality (10), which defines a measure of systemic

importance of the single firm in the transmission mechanism of firm-specific exogenous shocks

to the whole economic system. The median is computed across posterior simulations of the

network structure as provided by equation (17). The red line (blue line) with circle (square)

marks shows the centrality measure across companies when aggregate network connectedness is

low (high).

[Insert Figure 9 about here]

Panel A shows the results conditioning on aggregate financial wealth as a unique source of

systematic risk (i.e. CAPM). Energy companies such as Exxon Mobil (XOM) and Occidental

Ptl. (OXY) show the highest weight under a regime of low network connectivity (red line, circle

marks). Given the overall lower level of connectedness, the corresponding centrality measures

are low in magnitude albeit significant. Financial firms such as Bank of New York (BK) and

JP Morgan (JPM) rank 10th and 13th, respectively. The insurance sector giant AIG does not

seem to be systemically important ranking 19th when systemic risk is low. Consistently with

Figures 6-8 the systemic importance of Financials increases when network aggregate network

connectivity increases. Now, JP Morgan (JPM) and Bank of New York (BK) turns out to

be highly important for the economic system. Also, AIG now ranks 6th and carries a large
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weighted centrality for the economic network.

Panel B of Figure 9 shows the same weighted eigenvector centrality computed conditioning

on size and value measured by book-to-market ratio, in addition to aggregate wealth. Energy

stocks such as Exxon Mobil (XOM) shows a large weight when aggregate systemic risk is

relatively low. In the second state, Financials are again key for systemic risk management.

Bank of America (BAC), for instance, is weighted more than the double of Exxon Mobil (XOM)

and for times more than ConocoPhillips (COP). Also, Panel B shows that the network is much

more concentrated around financial firms. This is consistent with the idea that systemic risk and

systematic risks, although are not directly depending on each other, are not mutually exclusive.

For instance, the average, median, eigenvector centrality under high systemic risk is around

0.017 with the three-factor Fama-French model, against the modest 0.009 obtained from the

CAPM.

Bottom panel of Figure 9 shows median weighted eigenvector centrality computed from the

I-CAPM implementation with shocks to macroeconomic risk factors. Interestingly, Johnson

& Johnson carries the highest systemic risk. This is consistent with idea that by considering

macroeconomic factors lowers the marginal contribution of Energy companies which are likely

to be correlated with the business cycle. Energy companies such as Anadarko Ptl. (APC),

ConocoPhillips (COP), Occidental Ptl. (OXY), Apache (APA), and Schlumberger (SLB) show

now a much lower centrality in the economic network. The magnitude of the median weighted

eigenvector centrality for other sectors is relatively low. When aggregate systemic risk is higher

(blue line), the weight of Financials tend to dominate other industries. Consistently with the

CAPM and the three-factor Fama-French model, financial companies such as JP Morgan (JPM),

Bank of America (BAC), Bank of New York Mellon (BK), AIG, Citigroup (C), and Wells Fargo

(WFC) are now highly systemically important.

For the sake of completeness, Figure 10 reports the top 20 institutions ranked in both

aggregate regimes according to their median eigenvector centrality (8). The median is computed

across posterior simulations of the network structure as provided by equation (17). The red

line (blue line) with circle (square) marks shows the centrality measure across companies when

aggregate network connectedness is low (high). Top panel shows the ranking computed from the
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residuals of benchmarking CAPM model. When aggregate network connectivity is low, Energy

companies tend to be central for systemic risk management purposes. Exxon Mobil (XOM),

Occidental Ptl. (OXY), Schlumberger (SLB), and ConocoPhillips (COP) fills the top of the

ranking in terms of centrality within the network. Consistently with top panel of Figure 9 the

systemic importance of Financials increases when the network becomes more dense, with JP

Morgan (JPM), Bank of New York (BK) and Bank of America (BAC) bearing most of systemic

risk.

[Insert Figure 10 about here]

The same path is confirmed for both the three-factor Fama-French model (mid panel), and the

implementation of the I-CAPM model (bottom panel). Interestingly, Figures 9-10 make clear

a separation between states of high vs low systemic risks. As a matter of fact, for instance for

the three-factor model, the average weighted eigenvector centrality of the top 20 institutions is

0.017 with high systemic risk, against an average median value of 0.0055 when contagion is low.

The separation across regimes is robust across factor models and connectivity measures.

3.3.2 Industry-Level Network Centrality. In this section we aggregate the results across

sectors to obtain evidences on network centrality at the industry level. Firms are classified in sec-

tors according to the Global Industry Classification Standard (GICS), developed by MSCI. The

industry-level centrality measures are obtained by taking the median of firm-specific measures

averaged out within industries. For the sake of completeness we report the results computed

from both our weighted centrality measure (10) and the standard eigenvector centrality (8). Fig-

ure 15 shows the results. Top left (right) panel shows the results for the weighted eigenvector

centrality for the low (high) aggregate network density.

[Insert Figure 15 about here]

As we would expect from firm-level network centrality evidences, both the financial and the

energy sector tend to dominates across aggregate systemic risk conditions. Top-right panel

shows that when aggregate connectedness is high, the systemic importance of industries such

as Utilities, Telecomm, Healthcare, Consumer Staples and Discretionary are almost negligible.
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This is so as the network is mostly concentrated around few firms of both the financial and

the energy sector. Bottom left (right) panel shows the results for the standard eigenvector

centrality for the low (high) aggregate systemic risk. Bottom right panel shows that when

aggregate connectedness is high, energy and financials are still key for systemic risk management

purposes. However, the fact that (8) does not take into account the strength of the linkages (i.e.

covariance terms), makes other sector such as Healthcare, Tech and Consumer Staples relatively

important for the transmission mechanism of exogenous shocks. Such difference is even more

evident when considering the regime of low aggregate connectivity (bottom left panel). While

the energy sector still makes the top of the ranking in terms of systemic importance, Consumer

Staples and Technology now rank second and third, respectively. This makes clear that by

weighing existing linkages with covariance terms can lead to have clear cut evidences on the

network centrality at the industry level.

3.4 The Relationship with Market Valuations

One may argue that network centrality of a firm/industry is directly linked to its corresponding

relative market valuation. Figure 10 shows the relative weight of each industry with respect to

the whole market value. Market values are in dollar and obtained at the daily frequency for

the sample period 05/10/1996-10/31/2014. Top left panel represents the market value of the

financial sector over the rest of the economy. The relative weight of the financial sector drops

from 20% in 2006 to less than 10% across the great financial crisis of 2008/2009. Figure 2 shows

that across the crisis of 2008/2009 network connectedness is high. This implies an opposite

relationship between the centrality of the financial sector across, say, the period 2008/2009 and

its corresponding market value.

[Insert Figure 10 about here]

The opposite is true for the Energy sector (top middle panel). The relative market value of

the energy sector increases across the sample and tend to be high when aggregate connectivity

is high as well. The same positive relationship can be seen for Telecommunication Services

as shown in the bottom left panel. Industrials and Materials do not display a clear mapping
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with aggregate systemic risk. Also, the relative market value of the Technology industry spikes

during late 90s and bounce back beginning of 2000. This is the well known dot.com bubble.

Interestingly, although in terms of market valuation the Healthcare sector is highly relevant,

its corresponding network centrality is almost negligible across models and measures as shown

above.

We now formally test the existence of any significant relationship between firm-level network

centrality and market values across regimes. To this end we estimate a set of univariate cross-

sectional regressions where the dependent variable is the centrality measure for each firm in

regime k, i.e. x̃i,k, and the independent variable is the corresponding market value averaged

across the periods identified by regime k, i.e. wi,k;

x̃i,k = α+ δwi,k + ηi,k, for i = 1, ..., N and k = 1, ...,K, (18)

We compute such regression for each factor pricing model, different regimes and considering

both our weighted centrality measure (10) and standard eigenvector centrality (8). For each

regression, we report the δ coefficient, the t-statistic and the adjusted R2. We also compute a

rank-correlation coefficient as in Kendall (1938). We first rank firms according to their centrality

within the network, then we rank firms according to their average market value across regimes.

The coefficient τ measures the correspondence of the ranking. Table 2 shows the results.

[Insert Table 2 about here]

We find evidence that systemic risk and market value are not correlated. Top panel shows the

results for our weighted centrality measure. The delta coefficient is low in magnitude and not

statistically significant across regimes. The t-statistics are anywhere below the 5% significance

threshold, and the adjusted R2 is below 2% across models and regimes. Bottom panel shows

the results for the standard eigenvector centrality measure (8). Again, the delta coefficients are

low in magnitude and nowhere significant with t-statistics far below the significance threshold.

Also, adjusted R2 reaches the negligible upper bound of 2.3% for network centrality computed

from the residuals of an I-CAPM model within the low aggregate connectedness regime. Also,

the Kendall (1938) rank-correlation coefficient does not show any sensible mapping between

29



rankings, namely, those firms that are more central to the network does not not have the

highest average market value.

4 Network Centrality, Value Losses and Aggregate Financial

Distress

One important implication for any systemic risk measure is its ability to act as an early warning

signal for regulators and the public. To this end, we first explore the performances of our

weighted centrality measure to anticipate market value losses in the time series of firm valuations.

Second, we test the ability of the model-implied predictive systemic risk probability to act as an

early warning signal on aggregate financial stress conditions. The sample period is 05/10/1996-

10/31/2014, daily.

4.1 Network Centrality and Value Losses

Here we want to test the null hypothesis that those firms more exposed to systemic risk are those

that tend to experience higher losses. We first test the predictive content of aggregate systemic

risk through a set of predictive regressions. The forward looking nature of our Markov regime-

switching model allows to test the predictive ability of the model-implied aggregate systemic

risk state on value losses across firms. Let πt+1|t = p (st+1|y1:t) the probability that aggregate

connectedness is high at time t + 1, given information available up to time t, y1:t. We first

estimate N time series predictive regressions, one for each firm, to test the significance of the

aggregate systemic risk probability for predicting firm-level value losses;

∆wi,t+1 = φi,0 + φi,1 ln
(

πt+1|t

)

+ ǫi,t+1, for i = 1, ..., N, (19)

with ∆wi,t+1 the change in the market value in the interval [t, t+1] for the ith firm. Figure 13

shows the estimation results for the predictive regressions. Top left panel shows the distribution

of the predictive slope across firms. Although low in magnitude, the slope are negative meaning

that, on average, the aggregate level of systemic risk is negatively related to changes in the

market value across firms. Top right panel shows that such negative slopes are indeed quite
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significant for a large fraction of firms. Despite the majority of predictive regressions do not

show a significant slope coefficient, for many firms higher systemic risk effectively coincides with

significant losses in market valuation. Bottom panel shows the cross-sectional distribution of

the adjusted R2; for a significant fraction of firms the predictive regression (19) helps to sensibly

link current aggregate network connectivity to future valuation losses.

[Insert Figure 13 about here]

Figure 13 shows that few firms are significantly exposed to increasing network connectivity. This

does not necessarily imply that those with larger network centrality are more exposed to value

losses than others. We test this hypothesis by a set of cross-sectional regression. For each model

and regime we regress the average maximum percentage financial loss (AM%L henceforth) onto

the network centrality measure for i = 1, ..., N firms.12 The results are reported in Table 3 for

both out weighted and the standard eigenvector centrality measures.

[Insert Table 3 about here]

Panel A shows the results ranking firms according to the weighted centrality measure (10).

We find that companies more exposed to the overall risk of the system, i.e. those with higher

weighted eigenvector centrality, are more likely to suffer significant losses when aggregate sys-

temic risk is larger. In this respect, our centrality measure is similar to the marginal expected

shortfall (MES) originally proposed by Acharya et al. (2011), which tracks the sensitivity of firm

ith’s return to a system-wide extreme event, thereby providing a market-based measure of firms

fragility. Top panel shows that institutions that are more contemporaneously interconnected are

those that experience major losses in terms of market valuation. The cross-sectional regression

coefficient is significant at standard confidence levels and the adjusted R2 is around 10% across

models. However, such positive correlation between network centrality and market losses is less

significant when aggregate connectedness decreases. The results computed from the standard

eigenvector centrality measure (8) (Panel B) mainly confirms this patter. To summarize, Fig-

12Suppose that a regime of high systemic risk lasts from t to t + h. The maximum percentage loss for a
firm is defined to be the maximum difference between the market capitalization of an institution at time t and
t + h dividend by its market capitalization at time t. The average measure is computed by averaging out such
maximum percentage loss across those periods identified by the hidden state st.
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ure 13 and Table 3 show that based on weighted and standard eigenvector centrality measures,

firms that are highly interconnected are the ones that suffered the most across periods of market

turmoil. However, this is not necessarily true in more tranquil periods.

Table 3 also reports a rank-correlation coefficient as in Kendall (1938). We rank firms

from 1 to N according to their centrality first and then according to their AM%L suffered

across regimes. The rank correlation coefficient τ measures the correspondence of the ranking.

The results confirm that there is a significant relationship between network centrality and

value losses across firms, especially during periods of high aggregate systemic risk. The rank-

correlation coefficients are all significant at the 5% significance level, i.e. more exposed firms

will face larger losses on average. This is consistent with previous evidence in Billio et al. (2012),

Diebold and Yilmaz (2014) and Ahern (2015).

4.2 Systemic Risk and the Business Cycle

At the outset of the paper we clarify that we do not take any stake in any particular underlying

causal structure of an increasing network connectedness; rather, we take it as given and seek to

measure systemic risk from an agnostic point of view. However, understanding systemic risk is

of interest to understand financial crisis, and their relationship with the business cycle.

In this section we take a reduced form approach and investigate if variables which arguably

proxy the business cycle are related to systemic risk. Also, we investigate any early warning

feature of our aggregate systemic risk probability. We use several macro-financial variables to

capture business cycle effects on changes in the investment opportunity set. We consider the

term-, default- and credit-yield spreads, the aggregate dividend yield and price-earnings ratio,

the VIX index, the Market Uncertainty index proposed by Baker, Bloom, and Davis (2013),

and the Financial Stress Index held by the Federal Reserve Bank of St. Louis.13

Figure 14 shows the time series of the macro-financial predictors and the model-implied

probability of high systemic risk.14 Top middle panel shows the Financial Stress Index, which is

13Although these macro-financial variables can not be exactly linked to the real side of the economy, early
literature showed that they can be sensibly assumed to capture investors’ beliefs on the business cycle as well
as changes in the investment opportunity set (see Campbell 1996, Liew and Vassalou 2000, Cochrane 2001, and
Vassalou 2003).

14Default spread is computed as the difference between the yields of long-term corporate Baa bonds and
long-term government bonds. The term spread is measured the difference between the yields of 10- and 1-year
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computed on a weekly basis and greater than zero when the U.S. financial sector was in distress.

The average value of the index is normalized to be zero. Thus, zero is viewed as representing

normal financial market conditions. Values below zero suggest below-average financial market

stress, while values above zero suggest above-average financial market stress.

[Insert Figure 14 about here]

Figure 14 shows that a value higher than zero of the financial distress index tends to coincide

with periods of high aggregate systemic risk. A similar relationship holds between network

connectivity and the VIX index (top right panel). Spikes in market uncertainty captured by

the VIX tend to be consistent with increasing connectedness. Bottom left and right panels

show that also default spread and aggregate dividend yield can be potentially correlated with

systemic risk. For instance, an increasing default spread coincide with periods of high systemic

risk. Finally, the term spread does not show any evident relationship with aggregate network

connectivity.

We now formally investigate the relationship between systemic risk and macro-financial

variables. We estimate a Probit model considering different combinations of the above macro-

financial predictors as the set of independent variables Zt. The dependent variable st is the

systemic risk state which takes value 1 if the filtered probability of being in a regime of high

connectedness is greater than 0.5. First, we consider the contemporaneous relationship be-

tween state variables and aggregate systemic risk. Table 4 shows the results of a set of Probit

regressions.

[Insert Table 4 about here]

Panel A shows the betas. Column 3 and 4 show evidence is in favor of a contemporaneous and

positive relationship between systemic risk and credit and default spreads. The marginal effect

of default (credit) risk reported in Panel B is 0.38 (0.87), meaning that a one unit increase

in default (credit) risk implies an increasing probability of high systemic risk by one percent.

However, while the pseudo R2 by using default spread as unique predictor is 0.37, the same

government bonds. Credit spread is computed as the difference between the yields of long-term Baa corporate
bonds and long-term Aaa corporate bonds. Data on bonds, treasuries and financial distress are taken from
the FredII database of the Federal Reserve Bank of St.Louis. The data for the 1-month T-Bill are taken from
Ibbotson Associates.
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drops to 0.07 when using the credit risk premium as the only independent variable. The VIX

index is also positive (beta is equal to 0.135) related to aggregate network connectivity and

highly statistical significant (p-value is equal to 0.000). Interestingly, column M7 shows that

there is a positive (beta equal to 1.842) contemporaneous relationship between systemic risk

and financial distress. The corresponding pseudo R2 is equal to 0.45.15 Except for the market

uncertainty index of Baker et al. (2013), the explanatory power of macro-financial variables

survives across different model specifications.

Figure 14 shows that some of the independent variables such as aggregate dividend yield and

default spread are not stationary. Using non-stationary variables as regressors in a Probit model

my generate a spurious regression problem, meaning the regression betas are significant although

there is no contemporaneous correlation in the data generating process between systemic risk

and the business cycle. Therefore, for the sake of robustness we re-estimate the Probit regression

by using changes in macro-financial variables, instead of the levels. Table 5 reports the estimates

of the betas and the marginal effect of each independent variable.

[Insert Table 5 about here]

Interestingly, getting rid of non-stationarity clears the explanatory power of valuation ratios and

the VIX disappears. Credit and default spreads keep their explanatory power and are positively

correlated with systemic risk, with a pseudo R2 of 0.03 and 0,12, respectively. Changes to

aggregate financial distress are positively (0.424) and significantly (p-value= 0.001) correlated

with aggregate network connectivity. As a whole Table 5 shows that credit and default spreads,

as well as aggregate financial distress conditions are sensibly and positively correlated with the

level of connectedness of the economy as a whole.

15The weekly frequency of the financial stress index complicates the empirical analysis as we need to investigate
the systemic risk probability at the daily frequency. We interpolate through a cubic spline the values for all dates
over the period, using end of week values for the financial stress index. The interpolation method has the
advantage of producing a smooth financial stress index, and, in particular avoid jumps in the fitted Probit
regression values resulting from impounding the entire change in systemic risk probability to one day at the end
of each week.
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4.3 Early Warning on Aggregate Financial Distress

In this section, we investigate the reliability of the model-implied systemic risk state st as a

predictor of aggregate distress conditions in financial markets. We estimate a simple regression

with the financial stress index of the St.Louis Fed and current plus lagged values of the model-

implied systemic risk indicator. Panel A of Table 6 shows the results.

[Insert Table 6 about here]

Column 2 (M1) confirms the positive and significant contemporaneous relationship between

systemic risk and financial distress we found in Table 4. Column 3 (M3) shows that high

systemic risk can predict a higher financial distress one week ahead. Indeed, the beta on lagged

systemic risk is positive (1.331) and significant (p-value= 0.002), with and adjusted R2 equal to

0.35. As shown in Figure 14 top middle panel the financial stress index is rather persistence. In

order to mitigate any bias in the regression coefficient estimates we include lagged values of the

dependent variable as regressors. By including the lagged dependent variable the magnitude of

predictability sensibly decreases although remain significant.

Panel B shows the results by using current and lagged values of the log of the probability of

being in a regime of high network connectivity πt. The empirical evidence mostly confirms the

results of Panel A. The level of aggregate connectivity is positively and significantly correlated

with future aggregate conditions of distress in financial markets. Tables 4-6 lead us to conclude

our model-implied systemic risk indicator may represents an early warning signal for aggregate

distress conditions in financial markets.

5 Conclusions

Systemic risk measurement have become overwhelmingly important over the last few years.

After the great financial crisis the main question has been to what extent the economic system

is robust to a shock to the financial sector. In the language of network analysis this translates to

estimate the connectedness of financial firms with the rest of the economic network. We believe

we contribute to answer this question by providing a useful and intuitive model for systemic
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risk measurement.

We take an asset pricing perspective and infer the network structure system-wide from the

residuals of an otherwise standard linear factor pricing model. By conditioning on different

sources of systematic risk we implicitly recognize that systematic and systemic risk might be

conditional independent but not mutually exclusive concepts. For the sake of completeness we

consider different sources of systematic risks such as aggregate financial wealth, size, value and

shocks to macroeconomic risk factors. For a given linear factor model, we measure contagion as

a shift in the strength of the cross-firm network linkages. This is consistent with the common

wisdom that posits contagion representing a significant increase in cross-sectional dependence

across institutions/sectors/countries after a shock.

We estimate the model by developing a Markov Chain Monte Carlo (MCMC) scheme, which

naturally embeds parameter uncertainty in the modeling framework. This is not a minor ad-

vantage. Indeed, in a full information framework any inference on the economic network must

be read as contingent on having full confidence in the parameters point estimates. However,

this is rarely the case, especially in high dimensional time series settings. Moreover, alternative

conceivable values of the parameters will typically lead to different networks. We address this sit-

uation by providing an exact finite-sample Bayesian estimation framework which helps generate

posterior distribution of virtually any function of the linear factor model parameters/statistics.

An empirical application on daily returns of a large dimensional set of blue chip stocks,

shows that financial firms and sector play indeed a crucial role in systemic risk measurement,

beyond their relative market values. Also, we find that companies more exposed to the overall

risk of the system, i.e. those with higher weighted eigenvector centrality, are more likely to suffer

significant losses when aggregate systemic risk is larger. In this respect, our centrality measure

is similar to popular systemic risk measures such as the marginal expected shortfall. Finally,

our model-implied systemic risk measures can be interpreted as an early warning signal that

helps to predicts in the very near future conditions of aggregate distress in financial markets.

By no means we argue that our model is a final result; but rather an initial step towards

a unified framework to model systemic risk. More generally, we see our paper as part of an

emerging literature using network analysis in financial contexts for systemic risk measurement,
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in which we have the merit of introducing time variation and joint inference on uncertain

parameters and network structures, something that earlier literature did not provide.
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Appendix

A The Gibbs Sampler

The completed data likelihood is

p (y1:T , s1:T |θ, G) =
K
∏

k,l=1

T
∏

t=1

(2π)−n/2 |Σ̃t|
−n/2 exp
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2

(

yt −X ′
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t

(
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tβ̃t

)

)

p
Nkl,t

kl (A.20)

with Nkl,t = I{k} (st−1) I{l} (st). Combining the prior specifications (11)-(14) with the complete likelihood (A.20),

we obtain the posterior density

p (θ, G, s1:T |y1:T ) ∝ p (y1:T , s1:T |θ, G) p(θ, G) (A.21)

Since the joint posterior distribution is not tractable the Bayesian estimator of the parameters and graphs cannot

be obtained in analytical form, thus we approximate the posterior distribution and the Bayes estimator by

simulation. The random draws from the joint posterior distributions are obtained through a collapsed multi-

move Gibbs sampling algorithm (see e.g. Roberts and Sahu 1997 and Casella and Robert 2004), where the graph

structure, the hidden states and the parameter are sampled in blocks. At each iteration the Gibbs sampler

sequentially cycles through the following steps:

1. Draw s1:T conditional on θ, G and y1:T .

2. Draw Σk conditional on y1:T , s1:T , Gk and βk.

3. Draw Gk conditional on y1:T , s1:T and βk.

4. Draw βk conditional on y1:T , s1:T and Σk.

5. Draw πk conditional on y1:T , s1:T .

A.1 Sampling s1:T

In order to draw the unobservable state at each time and iteration we use a forward filtering backward sampling

(FFBS) algorithm (see Frühwirth-Schnatter 1994 and Carter and Kohn 1994). As the state st is discrete valued

the FFBS is applied in its Hamilton form. The Hamilton filter iterates in two steps, namely prediction and

updating. The prediction step at each time t is

p (st+1 = j|θ,y1:t) =
K
∑

k=1

pkjp (st = k|θ,y1:t) (A.22)

The updating step can be easily derived as

p(st+1 = j|θ,y1:t+1) =
p(yt+1|st+1 = j,θ,y1:t)p(st+1 = j|y1:t,θ)

p (yt+1|y1:t,θ)
(A.23)

where the normalizing constant is the marginal predictive likelihood defined as

p (yt+1|y1:t,θ) =
K
∑

k=1

p (yt+1|st+1 = k,θ,y1:t) p (st+1 = k|θ,y1:t) (A.24)

The draw p(s1:T |y1:T ,θ) can then be obtained recursively and backward in time by using the smoothed proba-

bilities as

p(s1:T |y1:T ,θ) = p (sT |y1:T ,θ)

T−1
∏

t=1

p (st|st+1,y1:t,θ) (A.25)
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where for instance

p (st = k|st+1 = j,y1:t,θ) =
pkjp (st = k|y1:t,θ)

p (st+1 = j|θ,y1:t)
(A.26)

A.2 Sampling Σk

Graphical structuring of multivariate normal distributions is often referred to covariance selection modelling

(Dempster 1972). In working with covariance selection models, Dawid and Lauritzen (1993) defined a family of

Markov probability distributions suitable for covariance matrices on decomposable graphs called Hyper-Inverse

Wishart. From a Bayesian perspective, for each state st = k and graphical structure Gk the hyper-inverse Wishart

turns out to be conjugate locally (see Carvalho et al. 2007 for a more detailed discussion).

Let Sk = {S1, . . . , SnS
} and Pk = {P1, . . . , PnP

} be the set of separators and of prime components, re-

spectively, of the graph Gk. By generating the tree representation of the prime components the density of the

hyper-inverse Wishart for Σk conditional con Gk writes as

p(Σk) =

nP
∏

j=1

p(ΣPj ,k)

nS
∏

i=1

(p(ΣSi,k))
−1 (A.27)

where

p(ΣPj ,k) ∝ |ΣPj ,k|
−(dk+2Card(Pj))/2 exp

{

−
1

2
tr(Σ−1

Pj ,k
Dk,j)

}

(A.28)

where DPj ,k is the j-th diagonal block of Dk corresponding to ΣPj ,k.

Let Tk = {t : st = k} and Tk = Card(Tk). By using the sets Sk and Pk then the posterior for Σk factorizes

as follows

p (Σk|y1:T ,θ, s1:T ,βk) ∝ (A.29)

∝
T
∏

t=1

(2π)−n/2 |Σ̃t|
−1/2 exp

(

−
1

2

(

yt −X ′
tβ̃t

)′

Σ̃−1
t

(

yt −X ′
tβ̃t

)

)

p(Σk)

∝
∏

t∈Tk

|Σk|
−1/2 exp

(

−
1

2

(

yt −X ′
tβk

)′
Σ−1

k

(

yt −X ′
tβk

)

)

p(Σk)

∝ |Σk|
−Tk/2 exp



−
1

2

∑

t∈Tk

(

yt −X ′
tβk

)′
Σ−1

k

(

yt −X ′
tβk

)



 p(Σk)

∝

nP
∏

j=1

|ΣPj ,k|
−Tk/2 exp

(

−
1

2
Σ−1

Pj ,k
D̂Pj ,k

)

nP
∏

j=1

∝ |ΣPj ,k|
−(dk+2Card(Pj))/2 exp

{

−
1

2
tr(Σ−1

Pj ,k
DPj ,k)

}

(A.30)

nS
∏

j=1

∝ |ΣSj ,k|
−(dk+2Card(Sj))/2 exp

{

−
1

2
tr(Σ−1

Sj ,k
DSj ,k)

}

(A.31)

∝

nP
∏

j=1

∝ |ΣPj ,k|
−(dk+2Card(Pj)+Tk)/2 exp

{

−
1

2
tr(Σ−1

Pj ,k
(DPj ,k + D̂Pj ,k)

}

(A.32)

nS
∏

j=1

∝ |ΣSj ,k|
−(dk+2Card(Sj))/2 exp

{

−
1

2
tr(Σ−1

Sj ,k
DSj ,k)

}

(A.33)

∝ HIWGk



dk + Tk, Dk +
∑

t∈Tk

etke
′
tk



 (A.34)

where D̂Pj ,k is the block of D̂k =
∑

t∈Tk
etke

′
tk corresponding to ΣPj ,k and etk = yt −X ′

tβk.
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A.3 Direct Network Search: Sampling Gk

In order to learn the Graph structure Gk conditional on the state k we apply a Markov chain Monte Carlo

for multivariate graphical models (see, e.g. Giudici and Green 1999 and Jones et al. 2005). This relies on

the computation of the unnormalized posterior over graphs pk(Gk|y1:T , s1:T ) ∝ p(y1:T , s1:T |Gk)p(Gk), for any

specified state k. It is easy to check that due to the prior independence assumption of the parameters across

regimes,

pk (y1:T , s1:T |Gk) =

∫ ∫

∏

t∈Tk

(2π)−n/2 |Σk|
−n/2 exp

(

1

2

(

yt −X ′
tβk

)′
Σ−1

k

(

yt −X ′
tβk

)

)

p(βk)p(Σ|Gk)dβkdΣk

(A.35)

This integral cannot be evaluated analytically. We apply a Candidate’s formula along the line of Chib (1995) and

Wang (2010). Such an approximation gives the value of the marginal likelihood via the identity pk (y1:T , s1:T |Gk) =

pk (y1:T , s1:T , Gk,βk,Σk) /p(Σk,βk|y1:T , s1:T ). As pointed out in Wang (2010), two different approximations may

be viable by integrating over disjoint subsets of parameters.

Following Jones et al. (2005) we apply a local-move Metropolis-Hastings based on the conditional poste-

rior pk(Gk|y1:T , s1:T ). A candidate G
′

k is sampled from a proposal distribution q(G
′

k|Gk) and accepted with

probability

α = min

{

1,
pk(G

′

k|y1:T , s1:T )q(Gk|G
′

k)

pk(Gk|y1:T , s1:T )q(G
′

k|Gk)

}

= min

{

1,
pk(G

′

k|y1:T , s1:T )p(G
′

k)q(Gk|G
′

k)

pk(Gk|y1:T , s1:T )p(Gk)q(G
′

k|Gk)

}

This add/delete edge move proposal is accurate despite entails a substantial computational burden.

A.4 Sampling βk

Conditional on s1:T , Σk and Gk, the posterior for the regime-dependent betas βk is conjugate and defined as

p (βk|Σk,y1:T , s1:T ) ∝ Np



M∗
k





∑

t∈Tk

XtΣ
−1
k (Gk)yt +M−1

k mk



 ,M∗
k



 (A.36)

with M∗
k =

(

∑

t∈Tk
XtΣ

−1
k (Gk)X

′

t +M−1
k

)−1

, and Σ−1
k (Gk) the inverse of the covariance matrix given the

underlying graph structure Gk.

A.5 Sampling the Transition Matrix Π

As regards the transition probabilities πk = (πk1, . . . , πkK), for the state st = k, the conjugate Dirichlet prior

distribution (11) updates as

(πk1, . . . , πkK |y1:T , s1:T ) ∼ Dir (δk1 +Nk1, . . . , δkK +NkK) (A.37)

with Nkl =
∑T

t=1 I{k} (st) I{l} (st−1) the empirical transition probabilities between the kth and the lth state.

B Simulation Example

We have introduced a tool for systemic risk measurement and emphasized its relationship to conditional depen-

dence properties in a large dimensional time series setting. Here we want to assess the reliability of the estimation

method through a simulation example. Specifically, we first investigate the ability of our inference scheme to

effectively capture network connectedness across states; then we compare our proposed methodology against a

standard Markov regime-switching SUR model. The purpose of the these simulation exercise is to show the
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effectiveness and efficiency of our systemic risk measurement scheme. Simulation results are based on a burn-in

period of 2,000 draws out of 10,000 simulations storing every other of them.

First we simulate a sample of T = 1000 observations yt, for p = 20 assets and considering a single factor

xt ∼ i.i.d.N(0, 1). We assume the existence of two persistence states with π11 = 0.95 and π22 = 0.95. For

simplicity we assume that the betas on the single factor are constant across assets and are different across states,

βi (st = 1) = 0.6 and βi (st = 2) = 1.2. The residual covariance structure is also changes across regimes and

is consistent with an underlying regime-specific graph-based network Gk ∈ G. Network connectedness is set to

be more concentrated (i.e. higher aggregate eigenvector centrality) in state st = 2, which then represents high

systemic risk. To avoid any particular effect of prior elicitation we choose fairly vague priors with dk = 3 and

Dk = 0.0001Ip for both states and ψ = 2/ (p− 1) for both states. We do not assume a priori any clear difference

in the network structure across states. Panel A of Figure 13 shows the adjacency matrix that defines the true

network against the estimated one for the contagion state;

[Insert Figure 13 about here]

The figure makes clear that the model has a fairly good performance in identifying network connectivity, namely,

the adjacency matrix A. In fact, the estimated graphical structure is short of two edges out of the nineteen in

the original network.16

In the second simulation exercise we compare our model against a benchmark SUR without network in the

residual covariance matrix. To compare the utility from our method with respect to the benchmark SUR, we

compute the estimation risk for Σk using Stein’s loss function

Loss
(

Σ̂,Σ
)

= tr
(

Σ̂Σ−1
)

− log |Σ̂Σ−1| − p (A.38)

with Σ̂ and Σ the estimated and true residuals covariance structure, respectively. We conduct the experiment for

different sample sizes, T = 50, 100, 200, with p = 20 assets and considering a single factor xt ∼ i.i.d.N(0, 1). As

above, we consider a persistence contagion state st = 2, with π22 = 0.95. Betas are constant across assets and

are different across states.

Panel B of Figure 13 shows box plots of the risk associated by different estimators across different sample

sizes. For the sake of exposition, we label our model as M1 and the classic SSUR specification as M2. The figure

makes clear that by fully acknowledging the network structure underlying the idiosyncratic covariance structure

Σ offers large gain over a standard SUR model. Such gains, are particularly significant when the ratio between

assets and the sample size p/T increases. This is consistent with previous evidence on the efficiency of sparse

covariance estimates (see e.g. Carvalho et al. 2007 and Wang and West 2009, among others).

16Inference on the graphical structure is made using an add/delete Metropolis-Hastings-within-Gibbs algorithm
as originally proposed in earlier literature such as George and McCulloch (1993), Madigan and York (1995),
George and McCulloch (1997), Giudici and Green (1999), and Jones et al. (2005), among the others. More
details on the asymptotic properties of the estimation scheme and the sensitivity to different prior specifications
are discussed in a separate online Appendix.
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Figure 1. Weighted Network Structure

Example of a weighted network structure. This figure shows the network structure implied by an underlying
undirected graphical model. Circles indicate the node and the lines are the edges between nodes. Each dashed
circle of the junction tree represents a clique while vertices shared by adjacent nodes of the tree define the
separators. In this graph {(1, 2, 3), (4, 5, 6), (7, 8)} is the set of cliques and {(2, 4)} the separator set. The σij

covariance terms represents the weights associated to the edges.
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Figure 2. Systemic Risk Probability

Systemic Risk Probability. This figure shows the model-implied probability of systemic risk computed from the
I-CAPM implementation with return on aggregate wealth in excess of the risk free rate considered as risk factor,
together with default-, term-spread and the aggregate dividend yield (see Petkova 2006). The gray area represents
the systemic risk probability, while the red line shows the NBER recession indicator for the period following the
peak of the recession to the through. The sample period is 05/10/1996-10/31/2014, daily.
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Figure 3. Transition Probabilities of Systemic Risk

This figure plots the transition probabilities of the systemic risk state. The sample period is 05/10/1996-
10/31/2014, daily. The first (last) three columns represent the probability of staying in a state of low (high)
systemic risk. Transition probabilities are computed for the three-factor Fama-French model, the CAPM and an
I-CAPM implementation, respectively. The sample period is 05/10/1996-10/31/2014, daily.
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Figure 4. Changes in Exposures to Systematic Risks - Low vs High Systemic Risk, Three-Factor Model

Conditional alphas and betas. This figure reports changes in the conditional intercepts and exposures to sources of systematic risks for each of the stock in the sample.
Top left panel shows the so-called Jensen’s alpha. Top right panel reports the exposure to market risk (excess return on aggregate wealth). Bottom left and right
panel report the firms exposures on the size and value effects as originally proposed in Fama and French (1993). The sample period is 05/10/1996-10/31/2014, daily.
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Figure 5. Changes in Exposures to Systematic Risks - Low vs High Systemic Risk, I-CAPM

Conditional alphas and betas. This figure reports the changes to conditional intercepts and exposures to sources of systematic risks for each of the stock in the
sample. Top left panel shows the so-called Jensen’s alpha. Top right panel reports the exposure to market risk (excess return on aggregate wealth). Bottom left and
right panel report the firms exposures on the default and aggregate dividend yield. The sample period is 05/10/1996-10/31/2014, daily.
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Figure 6. Weighted Network Connectedness: CAPM

Network connectivity conditioning for market risk. This figure report the network structure computed conditioning for market risk. Top panel shows the network
connectedness when systemic risk, or contagion, is low. Bottom panel shows the structure of the network when systemic risk increases.
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Figure 7. Weighted Network Connectedness: Three-Factor Model

Network connectivity conditioning for market risk, size and value. This figure reports the network structure computed conditioning for additional sources of systematic
risk such as size and value. Top panel shows the network connectedness when systemic risk, or contagion, is low. Bottom panel shows the structure of the network
when systemic risk increases.
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Figure 8. Weighted Network Connectedness: I-CAPM

Network connectivity from an I-CAPM implementation. This figure reports the network structure computed conditioning for additional sources of systematic risk
such as default and term spread, and aggregate dividend yield. Top panel shows the network connectedness when systemic risk, or contagion, is low. Bottom panel
shows the structure of the network when systemic risk increases.
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Figure 9. Weighted Eigenvector Centrality

Weighted eigenvector centrality, median values. This figure plots the median weighted eigenvector centrality
sorted for the top 20 institutions for both low and high systemic risk. The weighted eigenvector centrality
measures the systemic importance of each industry within the economic network, incorporating the strength
of the linkages measured by the covariances. The sample period is 05/10/1996-10/31/2014, daily. The network
structure is computed conditioning on aggregate wealth (CAPM, top panel), then adding size and value risk fators
(Fama-French, mid panel), and conditioning on shocks to financial state variables (I-CAPM, bottom panel).

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 C
JPM WFC

AXP

BAC
AIG

MS USB

APC XOM DVN
COF

COP

BK OXY
APA FCX HAL

CVX TGT

OXY

XOM

SLB

COP APA CVX
BAC HAL USB BK WFC FCX JPM DVN APC AXP C TXN AIG UTX

CAPM

M
ed

ia
n 

W
ei

gh
te

d 
E

ig
en

ve
ct

or
 C

en
tr

al
ity

 

 

Ranking

High Systemic Risk
Low Systemic Risk

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

XOM

SLB

UTX
PG

PFE JNJ LLY BAC HON UNP COP APA OXY USB ABT CSCO PEP GD BA

COST

BAC
C

WFC

JPM

BK

XOM

CVX

INTC

AIG

CSCO

TWX
CAT

UTX APC TGT USB
KO LOW BMY

KO

M
ed

ia
n 

W
ei

gh
te

d 
E

ig
en

ve
ct

or
 C

en
tr

al
ity

Ranking

Three−Factor Fama−French

 

 

Low Systemic Risk
High Systemic Risk

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
C

AIG

BAC

JPM
BK

WFC
APC

CSCO
USB

PG
INTC UTX

BMY

OXY
SLB

CVX ALL JNJ DVN XOM

JNJ

COP CAT
UTX

APC
XOM INTC WFC WMT TGT

OXY BAC LLY ABT APA

CSCO UNP BA HON AXP

M
ed

ia
n 

W
ei

gh
te

d 
E

ig
en

ve
ct

or
 C

en
tr

al
ity

Ranking

I−CAPM

 

 

High Systemic Risk
Low Systemic Risk

51



Figure 10. Standard Eigenvector Centrality

Eigenvector centrality, median values. This figure plots the median eigenvector centrality computed as in (8)
sorted for the top 20 institutions for both low and high systemic risk. Standard eigenvector centrality measures
the systemic importance of each industry within the economic network. The sample period is 05/10/1996-
10/31/2014, daily. The network structure is computed conditioning on aggregate wealth (CAPM, top panel),
then adding size and value risk fators (Fama-French, mid panel), and conditioning on shocks to macro-finance
state variables (I-CAPM, bottom panel).
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Figure 11. Weighted and Standard Eigenvector Centrality at the Industry Level

Centrality measures across industries. This figure plots the median weighted (top panels) and standard (bottom panels) eigenvector centrality averaged out within
industries for both low (left column) and high (right column) regimes of systemic risk. Standard eigenvector centrality measures the systemic importance of each
industry within the economic network. The weighted eigenvector centrality incorporates the strength of the linkages measures by the covariances. Industry classification
is based on the Global Industry Classification Standard (GICS) developed by MSCI. The sample period is 05/10/1996-10/31/2014, daily. The network structure
is computed conditioning on aggregate wealth (CAPM), then adding size and value risk fators (Fama-French), and conditioning on shocks to macro-finance state
variables (I-CAPM).
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(b) Weighted Eigenvector - High Systemic Risk
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Figure 12. Industries Relative Market Value

Relative market values. This figure reports the dollar-values market value for each industry relative to the whole market value. Industry classification is based on the
Global Industry Classification Standard (GICS) developed by MSCI. Market valuations are obtained from Datastream. The sample period is 05/10/1996-10/31/2014,
daily.
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Figure 13. Aggregate Systemic Risk and Value Losses Across Companies

Time-series predictive regressions. This figure plots the distribution of the betas, t-stats and adjusted R2 obtained from an OLS regression analysis in which the
dependent variable is the percentage changes in the market value for each institution and the independent variable is the log of the systemic risk probability computed
from the Markov regime-switching multi-factor model in (5). The solid blue line is the distribution of cross-sectional betas where the systemic risk probability
is obtained from the CAPM model. The dashed-dot green line is the cross-sectional distribution of the betas where the systemic probability is obtained from the
three-factor Fama-French model. The red dashed line is the cross-sectional distribution of the betas where the systemic probability is obtained from an implementation
of the I-CAPM. The sample period is 05/10/1996-10/31/2014, daily. Market values are obtained from Datastream.
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Figure 14. Systemic Risk, Financial Distress and Stock Predictors

Systemic risk and financial variables. This figure reports the time series of the model-implied probability of high systemic risk (top left panel), together with a set of
financial predictors. The set of variables considered are: the St. Louis Fed Financial Stress Index (top middle panel), the VIX index (top right panel), the default
spread (DEF, bottom left panel, measured as the difference between the 30-year treasury yield and yield on a Baa corporate bond), the term yield spread (TERM,
bottom middle panel, measured as the difference between the 10-year interest rate and the 1-month T-Bill rate), and the aggregate dividend yield (DY, bottom right
panel). Data are from FredII database of the St.Louis Fed and the Chicago Board Options Exchange (CBOE). The sample period is 05/10/1996-10/31/2014, daily.
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Figure 15. Simulation Example

Simulation results. This figure plots the estimation results on a simulated dataset as explained in Section 2.
Panel A compares the estimated adjacency matrix (right) to the true network (left). The length of the time
series simulation is T = 1000 and the asset span is p = 20. We assume the existence of two systemic risk states
and a single source of systematic risk which is independent of the rest, xt ∼ i.i.d.N(0, 1). Panel B shows the
results of the Stein Loss as computed from (A.38) with Σ̂ and Σ the estimated and true residuals covariance
structure, respectively. We conduct the experiment for different sample sizes, T = 50, 100, 200, with p = 20
assets and considering a single factor as above. Our model performance is compared with a standard Seemingly
Unrelated Markov Switching regression model.
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Table 1. Company List

This table summarize the companies in our dataset and the corresponding industry classification according to
the Global Industry Classification Standard (GICS), developed by MSCI. These companies represent the subset
of the blue chip stocks constitute the S&P100 for which we have at least 15 years of daily data. The S&P100
composition listing is taken as of December 2014.

ID Ticker Company Name GICS Sector ID Ticker Company Name GICS Sector

1 MMM 3M Industrials 42 HAL Halliburton Energy

2 T AT&T Tel. Services 43 HPQ Hewlett-Packard Technology

3 ABT Abbot Labs Health Care 44 HD Home Depot Cons. Disc

4 ALL All State Financials 45 HON Honeywell Intl Industrials

5 MO Altria Group Cons. Stap. 46 INTC Intel Technology

6 AXP American Exp Financials 47 IBM International Bus Mchs Technology

7 AIG American Intl Gp. Financials 48 JPM JP Morgan Chase Financials

8 AMGN Amgen Health Care 49 JNJ Johnson & Johnson Health Care

9 APC Anadarko Petroleum Energy 50 LLY Eli Lilly Health Care

10 APA Apache Energy 51 LMT Lockheed Martin Industrials

11 AAPL Apple Technology 52 LOW Lowe’s Comp. Cons. Disc

12 BAC Bank of America Financials 53 MCD McDonald’s Cons. Disc

13 BAX Baxter Intl Health Care 54 MDT Medtronic Health Care

14 BRKB Berkshire Hathaway Financials 55 MKR Merck & Company Health Care

15 BIIB Biogen Idec Health Care 56 MSFT Microsoft Technology

16 BA Boeing Industrials 57 MS Morgan Stanley Financials

17 BMY Bristol Myers Squibb Health Care 58 NKE Nike Cons. Disc

18 CVS CVS Health Cons. Stap. 59 NSC Norfolk Southern Industrials

19 COF Capital One Finl. Financials 60 OXY Occidential Plt. Energy

20 CAT Caterpillar Industrials 61 ORCL Oracle Technology

21 CVX Chevron Energy 62 PEP PepsiCo Cons. Disc

22 CSCO Cisco System Technology 63 PFE Pfizer Health Care

23 C Citigroup Financials 64 PG Procter & Gamble Cons. Stap.

24 KO Coca Cola Cons. Stap. 65 QCOM Qualcomm Technology

25 CL Colgate-Palm. Cons. Stap. 66 RTN Raytheon Industrials

26 CMCSA Comcast Cons. Disc 67 SLB Schlumberger Energy

27 COP ConocoPhillips Energy 68 SPG Simon Property Grp. Financials

28 COST Costco Cons. Stap. 69 SO Southern Utilities

29 DVN Devon Energy Energy 70 SBUX Starbucks Cons. Disc

30 DOW Dow Chemical Materials 71 TGT Target Cons. Disc

31 DD DuPont Materials 72 TXN Texas Instruments Technology

32 EMC EMC Technology 73 BK Bank of New York Mellon Financials

33 EMR Emerson Elect. Industrials 74 TWX Time Warner Cons. Disc.

34 EXC Exelon Utilities 75 USB US Bancorp Financials

35 XOM Exxon Mobil Energy 76 UNP Union Pacific Industrials

36 FDX Fedex Industrials 77 UTX United Tech Industrials

37 F Ford Motor Cons. Disc 78 UNH UnitedHealth Grp Health Care

38 FCX Freeport-McMoran Materials 79 VZ Verizon Tel. Services

39 GD General Dynamics Industrials 80 WMT WalMart Cons. Stap.

40 GE General Electric Industrials 81 WAG Walgreen Cons. Stap.

41 GILD Gilead Sciences Health Care 82 DIS Walt Disney Cons. Disc.

83 WFC Wells Fargo Financials
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Table 2. Network Centrality and Market Values

Centrality measures and market value. This table report the results from a robust regression analysis where the
dependent variable is the centrality measure computed for each firm. The independent variable is the company
specific corresponding market value. The regression is run for both regimes of systemic risk. Kendall (1938)
rank-correlation coefficient is computed by first ranking firms according to their centrality within the network.
Second we rank firms according to their average market value across the identified regimes. The rank correlation
coefficient τ measures the correspondence of the ranking. Panel A shows the results obtained using the median
weighted centrality measure as dependent variable. Panel B shows the results obtained using the median standard
centrality measure as dependent variable. Standard errors are corrected for heteroskedasticity and autocorrelation
in the residuals (Newey-West HAC). Rank-correlation that are significant at the 5% significance level are displayed
in bold.

Panel A: Weighted Eigenvector Centrality

CAPM Fama-French I-CAPM

δ t-stat R2 τ δ t-stat R2 τ δ t-stat R2 τ

High 0.012 0.908 0.002 0.054 0.001 0.649 0.001 0.061 0.011 0.654 0.003 0.045

Low 0.015 1.072 0.016 0.084 0.041 0.871 0.006 0.085 0.032 1.032 0.004 0.055

Panel B: Standard Eigenvector Centrality

CAPM Fama-French I-CAPM

δ t-stat R2 τ δ t-stat R2 τ δ t-stat R2 τ

High 0.099 0.861 0.011 0.062 0.003 0.123 0.003 0.059 0.021 0.782 0.012 0.048

Low 0.021 1.592 0.021 0.091 0.002 0.231 0.008 0.085 0.042 1.321 0.023 0.052
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Table 3. Network Centrality and Value Losses

Value losses and exposure to systemic risk. This table report the results from a robust regression analysis
where the dependent variable is the ranking of firms on the basis of their average maximum percentage financial
loss suffered across the two separate regimes. The independent variables are the network centrality measures
explained in Section 2. Kendall (1938) rank-correlation coefficient is computed by first ranking firms according
to their centrality within the network. Second we rank firms according to their average maximum percentage
financial loss. The rank correlation coefficient τ measures the correspondence of the ranking. Panel A shows the
results obtained using the median weighted centrality measure as dependent variable. Panel B shows the results
obtained using the median standard centrality measure as dependent variable. Standard errors are corrected for
heteroskedasticity and autocorrelation in the residuals (Newey-West HAC). Rank-correlation that are significant
at the 5% significance level are displayed in bold.

Panel A: Weighted Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.551 2.061 0.091 0.211 0.671 2.194 0.101 0.205 0.891 1.981 0.112 0.198

Low 0.213 1.651 0.045 0.181 0.391 1.691 0.062 0.171 0.691 1.759 0.061 0.169

Panel B: Standard Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.421 1.951 0.078 0.191 0.671 1.981 0.083 0.198 0.521 1.931 0.08 0.185

Low 0.172 1.761 0.055 0.188 0.401 1.641 0.051 0.185 0.301 1.761 0.054 0.160
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Table 4. Aggregate Network Connectivity and Macro-Financial Variables

Systemic risk and standard predictors. This table report the results from a Probit regression analysis where the
dependent variable is the model implied systemic risk indicator st. The set of independent variables are the term
yield spread (TERM, the difference between the 10-year interest rate and the 1-month T-Bill rate), the default
spread (DEF, the difference between the 30-year treasury yield and the yield on a Baa corporate bond), the
aggregate market dividend yield (DY), the credit spread (Credit, the difference between the Baa and the Aaa
corporate bond yields), the financial distress index (Distress, a synthetic indicator of financial distress in the
U.S.), the aggregate price-earnings ratio (PE), the market uncertainty index (Mkt Unc) from Baker et al. (2014),
and the VIX index. Data are from the FredII database of the St Louis Fed and the Chicago Board Options
Exchange (CBOE). The sample period is 05/10/1996-10/31/2014, daily. Panel A shows the estimated betas and
Panel B the marginal effects. ***means statistical significance at the 1% confidence level, ** significance at the
5% confidence level and * significance at the 10% level.

Panel A: Betas

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Intercept -0.017 −1.336∗∗∗ −4.625∗∗∗ 0.895∗∗∗ −2.382∗∗∗ −3.261∗∗∗ −0.407∗∗∗ −0.566∗∗∗ -0.331 −7.691∗∗∗ −3.301∗∗∗

Term −0.185∗∗∗ −0.531∗∗∗ −0.501∗∗∗

Credit 1.001∗∗∗ 2.017∗∗∗

Default 2.278∗∗∗ 3.631∗∗∗

DY −0.685∗∗∗ −3.061∗∗∗

PE 0.101∗∗∗ 0.119∗∗∗

VIX 0.135∗∗∗ 0.121∗∗∗ 0.081∗∗∗ 0.138∗∗∗

Distress 1.842∗∗∗

Mkt Unc 0.004∗∗∗ -0.001

Pseudo R2 0.03 0.07 0.37 0.04 0.11 0.29 0.45 0.05 0.56 0.59 0.29

Panel B: Marginal Effects

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Term -0.071 -0.179 -0.184

Credit 0.381 0.756

Default 0.875 1.231

DY -0.257 -1.031

PE 0.038 0.042

VIX 0.051 0.041 0.031 0.051

Distress 0.671

Mkt Unc 0.002 -0.002
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Table 5. Aggregate Network Connectivity and Changes in Macro-Financial Variables

Systemic risk and changes in standard predictors. This table report the results from a Probit regression analysis
where the dependent variable is the model implied systemic risk indicator st. The set of independent variables
are changes from t − 1 to t of the term yield spread (TERM, the difference between the 10-year interest rate
and the 1-month T-Bill rate), the default spread (DEF, the difference between the 30-year treasury yield and
the yield on a Baa corporate bond), the aggregate market dividend yield (DY), the credit spread (Credit, the
difference between the Baa and the Aaa corporate bond yields), the financial distress index (Distress, a synthetic
indicator of financial distress in the U.S.), the aggregate price-earnings ratio (PE), the market uncertainty index
(Mkt Unc) from Baker et al. (2014), and the VIX index. Data are from the FredII database of the St Louis
Fed and the Chicago Board Options Exchange (CBOE). The sample period is 05/10/1996-10/31/2014, daily.
Panel A shows the estimated betas and Panel B the marginal effects. ***means statistical significance at the 1%
confidence level, ** significance at the 5% confidence level and * significance at the 10% level.

Panel A: Betas

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Intercept −0.335∗∗∗ −0.332∗∗∗ −0.335∗∗∗ −0.334∗∗∗ −0.334∗∗∗ −0.332∗∗∗ −0.325∗∗∗ −0.332∗∗∗ −0.335∗∗∗ −0.335∗∗∗ −0.330∗∗∗

Term 0.656∗∗∗ 0.738∗∗∗ 0.701∗∗∗

Credit 2.321∗∗∗ 2.451∗∗∗

Default 1.998∗∗∗ 2.147∗∗∗

DY 0.306 0.891

PE -0.021 -0.067

VIX -0.002 -0.012 -0.006 0.001

Distress 0.424∗∗∗

Mkt Unc 0.001 -0.002

Pseudo R2 0.01 0.03 0.12 0.01 0.01 0.02 0.09 0.01 0.14 0.15 0.01

Panel B: Marginal Effects

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Term 0.248 0.281 0.264

Credit 0.875 0.927

Default 0.798 0.812

DY 0.115 0.336

PE -0.008 -0.025

VIX -0.001 -0.005 -0.002 0.001

Distress 0.261

Mkt Unc 0.001 -0.001
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Table 6. Aggregate Network Connectivity and Financial Distress

Systemic risk and financial distress indicators. This table report the results from a robust regression analysis
where the dependent variable is the St. Louis Fed Financial Stress Index (Distress). Panel A shows the results
with using as independent variables contemporaneous and lagged values of the model implied systemic risk
indicator st. Panel B shows the same regressions using current and lagged values of the log of the probability of
high network connectivity ln

(

πt+1|t

)

. Data are from the FredII database of the St Louis Fed. The sample period
is 05/10/1996-10/31/2014, daily. ***means statistical significance at the 1% confidence level, ** significance at
the 5% confidence level and * significance at the 10% level. Standard errors are corrected for heteroskedasticity
and autocorrelation in the residuals (Newey-West HAC)

Panel A: Systemic Risk Indicator (Dep: Financial Distress)

M1 M2 M3 M4 M5 M6 M7 M8

Intercept −0.501∗∗∗ −0.512∗∗∗ −0.522∗∗∗ -0.001 -0.014 -0.007 -0.012 -0.013

st 1.329∗∗∗ 0.033∗∗∗ 0.023∗∗∗ 0.025∗∗∗

st−1 1.331∗∗∗ 0.017∗∗ 0.014∗ 0.034∗∗

st−2 1.341∗∗∗ -0.028

Distress (-1) 0.982∗∗∗ 0.981∗∗∗ 0.983∗∗∗ 0.982∗∗∗ 0.982∗∗∗

adj R2 0.37 0.35 0.37 0.95 0.92 0.94 0.96 0.94

Panel B: Log of High Systemic Risk Probability (Dep: Financial Distress)

M1 M2 M3 M4 M5 M6 M7 M8

Intercept 0.772∗∗∗ 0.776∗∗∗ 0.778∗∗∗ -0.001 0.018 0.016 -0.012 0.019

ln (πt) 0.208∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗

ln (πt−1) 0.210∗∗∗ 0.006∗∗ 0.005∗∗ 0.010∗

ln (πt−2) 0.201∗∗∗ 0.001

Distress (-1) 0.982∗∗∗ 0.981∗∗∗ 0.983∗∗∗ 0.982∗∗∗ 0.982∗∗∗

adj R2 0.41 0.42 0.43 0.95 0.95 0.94 0.97 0.95
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