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Sparse Graphical Vector Autoregression: A Bayesian
Approach

Daniel Felix Ahelegbey∗, Monica Billio, Roberto Casarin
Department of Economics, Ca’Foscari University of Venice, Italy

Abstract

In high-dimensional vector autoregressive (VAR) models, it is natural to have large num-
ber of predictors relative to the number of observations, and a lack of efficiency in esti-
mation and forecasting. In this context, model selection is a difficult issue and standard
procedures may often be inefficient. In this paper we aim to provide a solution to these
problems. We introduce sparsity on the structure of temporal dependence of a graphical
VAR and develop an efficient model selection approach. We follow a Bayesian approach
and introduce prior restrictions to control the maximal number of explanatory variables
for VAR models. We discuss the joint inference of the temporal dependence, the maxi-
mum lag order and the parameters of the model, and provide an efficient Markov chain
Monte Carlo procedure. The efficiency of the proposed approach is showed on simulated
experiments and real data to model and forecast selected US macroeconomic variables
with many predictors.

Keywords: High-dimensional Models, Large Vector Autoregression, Model Selection,
Prior Distribution, Sparse Graphical Models, Bayesian Vector Autoregressive Models

JEL: C11, C15, C52, C55, E17

1. Introduction

High dimensional modeling and large dataset handling have recently gain attention
in several fields, particularly in economics and finance. This has become necessary since
useful information is often scattered among large number of variables. Building mod-
els that allow for extraction of these information from large dataset enhances a better
understanding of the modern economic and financial system. Many researchers have
shown that combining financial and macroeconomic variables to estimate large vector
autoregressive (VAR) models produces better forecasts than standard approaches (see,
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Banbura et al., 2010; Carriero et al., 2013; Giannone et al., 2005; Koop, 2013; Stock and
Watson, 2012). Many others, using datasets of a large number of financial institutions,
have shown that the financial system has become highly interconnected and thus, can
be represented as a network where linkages among agents sharing common structures
play a fundamental role in contagion and the spread of systemic risk (see, Billio et al.,
2012; DasGupta and Kaligounder, 2014; Diebold and Yilmaz, 2014; Hautsch et al., 2014;
Huang et al., 2012).

In this paper we propose a new Bayesian model for multivariate time series of large
dimension by combining graph-based notion of causality (see Lauritzen and Wermuth,
1989; Pearl, 1988; Whittaker, 1990), with the concept of sparsity (see, e.g. Box and
Meyer, 1986). Graphical models have been applied in time series analysis for estimating
causal structures in VAR models (see Corander and Villani, 2006; Demiralp and Hoover,
2003; Moneta, 2008; Swanson and Granger, 1997) and identification restrictions in struc-
tural VAR (Ahelegbey et al., 2015). They have received increasing attention as tools to
represent interconnectedness and sources of contagion among financial institutions (see
Ahelegbey and Giudici, 2014; Barigozzi and Brownlees, 2014; Billio et al., 2012; Diebold
and Yilmaz, 2014; Merton et al., 2013). As described in the following, we contribute to
the literature in many ways.

One of the key challenges of high-dimensional models is the complex interactions
among variables and the inferential difficulty associated with handling large datasets. For
instance, in large VAR models, econometricians encounter the curse of dimensionality
problem due to high number of variables relative to the number of data points. The
standard Bayesian VAR approach to this problem is to apply Minnesota prior by Doan
et al. (1984), as a solution to overfitting. This approach is however inefficient to deal with
the problem of indeterminacy (see Donoho, 2006), i.e. when the number of parameters in
a system of equations exceeds the number of observations. Two common approaches to
the indeterminacy issue discussed in the literature are based alternatively on dimension
reduction or variable selection methodologies. For dimension reduction, dynamic factor
models, factor augmented VAR and Bayesian model averaging have been extensively
discussed and widely considered to extract useful information from a large number of
predictors (see Bai and Ng, 2008; Bernanke et al., 2005; Geweke, 1977; Giannone et al.,
2005; Koop and Potter, 2004; Stock and Watson, 2006). For variable selection, standard
techniques have been applied to reduce the number of predictors, e.g., the Least Absolute
Shrinkage and Selection Operator (LASSO) of Tibshirani (1996), and its variants, (see,
e.g. Efron et al., 2004; Kyung et al., 2010; Park and Casella, 2008; Zou and Hastie, 2005).
The method considered in this paper is related to the latter, thus to variable selection.

Variable selection is a fundamental problem in high-dimensional models, and this
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is closely related to the possibility to describe the model with sparsity (Zhang et al.,
2012). The idea of sparsity is associated with the notion that a large variation in the
dependent variables is explained by a small proportion of predictors (Box and Meyer,
1986). Modeling sparsity has received attention in recent years in many fields, including
econometrics, (see Elliott et al., 2013; Gefang, 2014; Korobilis, 2013). See also Belloni
and Chernozhukov (2011) for an introduction to high-dimensional sparse econometric
models.

This paper introduces and models sparsity in graphical VAR models of large dimen-
sion by dealing also with uncertainty in the lag order. It thus substantially extends the
graphical VAR model, the inference approach and posterior approximation algorithm
given in Ahelegbey et al. (2015). In most empirical analyses, researchers often overlook
dependence among series when dealing with multi-equation regression models and large
number of predictors, (see, e.g. Korobilis, 2013; Stock and Watson, 2014), since model se-
lection is a difficult issue and such approach is often necessary to avoid the indeterminacy
problem. However, this can be unsatisfactory in terms of interpretability and forecasting
performance, since temporal dependence in the series is ignored. The graphical approach
presented in this paper enables us to deal with this indeterminacy problem by exploiting
sparsity to estimate the dynamic causal structure in large VAR models.

Many studies have considered several approaches to model sparse graphs (see, e.g.
Carvalho et al., 2008; Jones et al., 2005; Scott and Carvalho, 2008; Shojaie and Michai-
lidis, 2010). Also, there is an increasing interest in sparsity estimation for large VAR
models (see, e.g. Davis et al., 2012; De Mol et al., 2008; Gefang, 2014; Kock and Callot,
2012; Medeiros and Mendes, 2012; Song and Bickel, 2011). We contribute to this liter-
ature by focusing on graphical VAR models from a Bayesian perspective with suitable
prior specifications to deal with sparsity on the temporal dependence. More precisely, we
build on the fan-in method of Friedman and Koller (2003) and propose a new approach
to sparsity modeling. The idea of the fan-in is based on imposing a maximal number of
predictors to ensure sparsity on the graph. Setting an a-priori hard fan-in might be too
restrictive for large VAR applications. We therefore propose a prior distribution on the
fan-in to allow for different prior information level about the maximal number of predic-
tors for each equation of the VAR model. Thus, we allow for a random fan-in and adapt
this prior distribution to the prior probability in variable selection problems. We show
that this new prior distribution encourages sparsity on the graph taking into account
the lag order. Since there is duality between prior and the penalty in the information
criterion, our prior leads to a modified BIC for graphical model selection.

We also contribute to the literature on dynamic relationship identification. Here, we
propose an efficient Markov Chain Monte Carlo (MCMC) algorithm to sample jointly,
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the graph structure, the lag order and the parameters of the VAR model. Due to the
uncertainty on the lag order, we propose an efficient MCMC algorithm that takes ad-
vantage of computational power through parallel simulation of the graph and lag order.
Inference of the graph and lag order allows us to estimate only the parameters of the
relevant explanatory variables.

We show the efficiency and study the performance of our approach through simulation
examples and an application to forecast macroeconomic times series with large number of
predictors. We consider the standard Lasso-type methods (i.e. LASSO and Elastic-Net)
as benchmarks for comparing the identified causal structure and the forecast ability. We
find evidence that our sparse graphical VAR model is more parsimonious than the LASSO
and Elastic-Net. Furthermore, we find evidence of a gain in the predictive accuracy of
our approach over the Lasso-type methods.

The paper is organized as follows: Section 2 presents the graphical concept for VAR
models; Section 3 discusses prior distributions and focuses on the interaction between
lag order and sparse graph prior distribution; Section 4 discusses the Bayesian inference
scheme; Section 5 illustrates the simulation experiments; and Section 6 presents the
empirical application.

2. Graphical VAR Models

Graphical models are statistical models that summarize the marginal and conditional
independences among random variables by means of graphs (see Brillinger, 1996). The
core of such models is representing relationships among variables in the form of graphs
using nodes and edges, where nodes denote variables and edges show interactions. They
can be represented in a more compact form by (G, θ) ∈ (G × Θ), where G is a graph of
relationships among variables, θ is the graphical model parameters, G is the space of the
graphs and Θ is the parameter space.

Let Xt be n × 1 vector of observations at time t and assume Xt = (Y ′t , Z ′t), where
Yt, the ny × 1 vector of endogenous variables, and Zt, a nz × 1, nz = (n− ny) vector of
exogenous predictors. In a VAR model with exogenous variables, the variables of interest
Yt, is determined by the equation

Yt =
p∑
i=1

BiXt−i + εt (1)

t = 1, . . . , T , where εt is ny × 1 vector of errors, independent and identically normal,
with mean zero and covariance matrix Σε; p is the maximum lag order; Bi, 1 ≤ i ≤ p is
ny × n matrix of coefficients.
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By interpreting (1) as a model with temporal dependence between explanatory and
dependent variables, The VAR model can be expressed in a graphical framework (referred
to as graphical VAR model), with a one-to-one correspondence between the coefficient
matrices and a directed acyclic graph; if Bs,ij , 0 then there is a causal effect of Xj

t−s

on Y it , 1 ≤ s ≤ p. Here we read Xi
t as realization of the i-th element of X at time t.

More formally, we define the relation Bs = (Gs ◦ Φs), where Gs is a ny × n binary
connectivity matrix (also called adjacency matrix), Φs is a ny×n coefficients matrix, and
the operator (◦) is the element-by-element Hadamard’s product (i.e., Bs,ij = Gs,ij Φs,ij).
Based on this definition, we identify a one-to-one correspondence between Bs and Φs
conditional on Gs, such that Bs,ij = Φs,ij , if Gs,ij = 1; and Bs,ij = 0, if Gs,ij = 0. The
above relationship can be presented in a stacked matrix form as, B = (G ◦ Φ), where
B = (B1, . . . , Bp), G = (G1, . . . , Gp) and Φ = (Φ1, . . . ,Φp), where each matrix is of
dimension ny × np.

Let Wt be stacked lags of Xt, where Wt = (X ′t−1, . . . , X
′
t−p)′ is of dimension np× 1,

with p as the lag order, and Vt = (Y ′t ,W ′t )′ of dimension (ny+np)×1. Suppose the joint,
Vt, follows the distribution, Vt ∼ N (0,Ω−1), where Σ = Ω−1 is (ny + np)× (ny + np) is
the covariance matrix. The joint distribution of the variables in Vt can be summarized
with a graphical model, (G, θ), where G ∈ G consists of directed edges. In this paper,
we focus on modeling directed edges from elements in Wt to elements in Yt, capturing
the temporal dependence among the observed variables. More specifically, Gij = 0,
means the i-th element of Yt and j-th element of Wt are conditionally independent given
the remaining variables in Vt, and Gij = 1 corresponds to a conditional dependence
between the i-th and j-th elements of Yt andWt respectively given the remaining variables
in Vt. The graphical model parameter, θ ∈ Θ, consist the coefficients, capturing the
strength and sign of the temporal dependence relationship described by G. Based on the
above assumption, estimating the model parameters associated with G is equivalent to
estimating the precision matrix, Ω, i.e θ = Ω. The relationship between the parameters
of the VAR, {B,Σε}, and that of the graphical model, Ω, is as follows.

Proposition 1. Suppose the marginal distribution of Wt ∼ N (0,Σww) and the condi-
tional distribution of Yt|Wt ∼ N (BWt,Σε). There is a correspondence between {B,Σε}
and Ω, such that given Ω, we obtain Σ = Ω−1 and {B,Σε} can be estimated by

B = ΣywΣ−1
ww, Σε = Σyy − ΣywΣ−1

wwΣwy (2)

Also given {B,Σε} and Σww, the precision matrix Ω = Σ−1 of (Yt,Wt) is estimated by

Ω =
(

Σ−1
ε −Σ−1

ε B

−B′Σ−1
ε Σ−1

ww +B′Σ−1
ε B

)
(3)
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Proof. See Appendix A.1.

Following our definition, B = (G ◦ Φ) and the results of Proposition 1, we identify
the relationship between Ω and the dependence structure G, through the sub-matrix
(Σ−1

ε B) of Ω. We denote ΩG = Σ−1
ε B, defined on the space M(G), i.e. the set of

precision matrices where elements of ΩG corresponds to elements in G. Clearly, if the
errors are assumed to be independent and normally distributed, Σε is a diagonal matrix,
which when normalized to identity leads to a one-to-one correspondence between B,ΩG

and G such that Bij = ΩGij = 0 if Gij = 0 and Bij = ΩGij , 0 if Gij = 1. In large VAR
models estimation, most empirical papers follow the above assumption on the errors to
estimate the model, (see, e.g. Kock and Callot, 2012; Stock and Watson, 2014).

In this paper we assume Σε is a full matrix, i.e, the errors are correlated among
the equations of the VAR. Estimating our graphical VAR model therefore involves: the
temporal dependence graph, G, the maximum lag order, p, and the set of parameters in Ω
which related to {B,Σε}. Estimating all these jointly is challenging. However, following
the Bayesian paradigm allows us to take into account uncertainties on the quantities
of interest and inference on these through model averaging, (Giudici and Green, 1999;
Madigan and York, 1995). The objective of this paper is to estimate jointly the lag order
and graph from the observed time series, and to incorporate the inferred quantities to
select the relevant variables to estimate the parameters of the model.

3. Sparse Bayesian Graphical VAR Models

In a system of linear equations where the number of parameters exceeds the number
of observations, for instance in large VAR models, we face another problem referred to as
indeterminacy, (see Donoho, 2006). Such systems can be modeled by exploiting sparsity.
The description of our graphical VAR for high dimensional multivariate time series is
completed with the elicitation of the prior distributions for the lag order p, a sparsity
prior on the graph, and the prior on G and Ω.

3.1. Lag Order Prior Distribution

We allow for different lag orders for the different equations of the VAR model. We
denote with pi the lag order of the i-th equation. We assume for each pi, i = 1, . . . , ny,
a discrete uniform prior on the set {p, . . . , p̄}

P (pi) = 1
(p̄− p+ 1) I{p,...,p̄}(pi) (4)
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where IA(x) is the indicator function, that is unity if x ∈ A and zero otherwise. This
is a standard choice in AR model selection problems (e.g., see Casarin et al. (2012)).
Alternatively, the lag order can be assumed to follow a truncated Poisson distribution
with mean λ and maximum p̄ (see Vermaak et al. (2004)), or a discretized Laplace
distribution (see Ehlers and Brooks (2004)). Our choice of discrete uniform distribution
is fairly informative since p and p̄ are defined a-priori following standard applications
and assigns equal weights to all possible values of pi. For instance, in estimating VAR
models with monthly (quarterly) time series, the standard lag selection procedure often
consider p = 1 and p̄ = 12 (p̄ = 4). The alternative lag order prior distributions are more
informative and assigns different weights to the possible values of pi.

3.2. Standard Graph Prior Distribution

Most of the literature on graphical models takes the prior for a graph G with n

variables as uniform over all the relevant graphs, i.e., P (G) = |G|−1, where |G| is the
cardinality of G, (see Geiger and Heckerman, 2002; Giudici and Castelo, 2003). This can
be attributed to the fact that the number of possible graphs increases super-exponentially
with the number of variables, and there is difficulty in calculating the number of possible
graphs. Assuming uniform probabilities for all graphs, however, does not ensure sparsity.
Thus, many authors have discussed several approaches to penalize globally or locally
“dense” graphs (see, e.g. Carvalho et al., 2008; Jones et al., 2005; Scott and Carvalho,
2008; Wang, 2010). See also Telesca et al. (2012) and Shojaie and Michailidis (2009) for
the use of explicit information prior to improve the estimation of the graph structure.

Friedman and Koller (2003) proposed a factorization of the graph prior into equation
specific terms for DAG models. As argued by the authors, setting an upper bound on
the number of explanatory variables for each dependent variable encourages sparsity on
the graph. This bound is referred to as the fan-in restriction in the graphical model
literature. Let m be the maximum number of explanatory variables for each equation.
Restricting the graph model selection to at most f explanatory variables instead of m,
f < m, reduces the number of possible sets from O(2m) to

(
m
f

)
, where

(
n
k

)
is the binomial

coefficient. A uniform choice on the latter set yields a graph prior

P (G) =
n∏
i=1

P (πi) ∝
n∏
i=1

(
n− 1
|πi|

)−1
(5)

where πi = {j = 1, . . . , n : Gij = 1} is the set of explanatory variables of the i-th
equation, |πi| is the number of elements in πi, and P (πi) is the local graph prior of the
i-th equation.
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Jones et al. (2005) discussed a prior distribution for penalizing the inclusion of addi-
tional edges in dense graphs given by

P (G|γ) = γk(1− γ)m−k (6)

where m is the maximum number of edges and k represents the number of edges in the
graph. In their application, the authors use a Bernoulli prior on each edge inclusion with
parameter γ = 2/(n− 1) and set m =

(
n
2
)
.

For choices of the prior distribution on γ in the beta family, Scott and Carvalho
(2008) showed that γ can be explicitly marginalized out. The uniform prior on γ gives a
marginal prior inclusion probability of 1/2 for all edges and yields model probabilities

P (G) = 1
(m+ 1)

(
m

k

)−1
(7)

3.3. Sparsity Prior Distribution

We build on the fan-in approach of Friedman and Koller (2003) by introducing a prior
distribution on the fan-in to allow for different prior information level about the maximal
number of predictors for each equation of the VAR model.

In a multivariate dynamic models with n variables and a lag order p, the number
of possible predictors is np. Given that each series has T number of observations, then
the number of observations of the model is T − p. In large VAR models, it is often
natural that the number of predictors is greater than the number of observations, i.e.
np > T−p. When this happens, we expect that each equation has at most T−p predictors
to efficiently estimate the model. In cases where T−p > np, we expect that each equation
has at most np predictors. Thus the maximal number of explanatory variables required
to efficiently estimate a high dimensional model is given by mp = min{np, T−p}. Setting
an a-priori hard fan-in (see Friedman and Koller, 2003) might be too restrictive for large
VAR applications.

We denote with η̄, 0 ≤ η̄ ≤ 1, the measure of the maximal density, i.e. the fraction of
the predictors that explains the dependent variables. Thus the level of sparsity is given
by (1− η̄). We set the fan-in to f = bη̄mpc, where f is the largest integer less than η̄mp.
To allow for different levels of sparsity for the equations in the VAR model, we assume a
prior distribution on the maximal density for the different equations. We denote η̄i the
maximal density of the i-th equation and assume the prior on η̄i, given lag order pi is
beta distributed with parameters a, b > 0, η̄i|pi ∼ Be(a, b), on the interval [0, 1]

P (η̄i|pi) = 1
B(a, b) η̄

a−1
i (1− η̄i)b−1 (8)
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This leads to random fan-in’s for the different equations in the VAR model. Note that the
fan-in, fi, must be directly related to the number of selected predictors in each equation
and indirectly related to the number of observations of the model.

3.4. Our Graph Prior Distribution

We define the graph prior for each equation in the VAR model conditional on the
sparsity prior. We refer to the prior on the graph of each equation as the local graph prior,
denoted by P (πi|pi, γ, η̄i). Following (Scott and Berger, 2010), we consider the inclusion
of predictors in each equation as exchangeable Bernoulli trials with prior probability

P (πi|pi, γ, η̄i) = γ|πi|(1− γ)npi−|πi| I{0,...,fi}(|πi|) (9)

where γ ∈ (0, 1) is the Bernoulli parameter, |πi| is the number of selected predictors out
of npi and fi = bη̄impc is the fan-in restriction for the i-th equation. We assign to each
variable inclusion a prior probability, γ = 1/2, which is equivalent to assign the same
prior probability to all models with predictors less than the fan-in fi, that is

P (πi|pi, η̄i) = 1
2npi I{0,...,fi}(|πi|) (10)

Alternatively, a uniform prior on γ gives to each variable a marginal prior inclusion
probability of 1/2 and a local graph prior (Foygel and Drton, 2011) given by

P (πi|pi, η̄i) =
(
npi
|πi|

)−1
I{0,...,fi}(|πi|) (11)

3.5. Parameter Prior Distribution

There are two main approaches to define parameter priors for graphical models, how-
ever a common feature to these approaches is that both are graph conditional parameter
priors. On one hand is a vast work on Gaussian DAG models discussing a list of condi-
tions that permits an unconstrained precision matrix Ω (see, e.g. Consonni and Rocca,
2012; Geiger and Heckerman, 2002; Heckerman, 1998; Heckerman and Chickering, 1995;
Heckerman and Geiger, 1994). On the other hand is a vast publication on Gaussian de-
composable undirected graphical (UG) models with constraints on the precision matrix
Ω (see, e.g. Carvalho and Scott, 2009; Lenkoski and Dobra, 2011; Roverato, 2002; Wang
and Li, 2012). Note that, an unconstrained Ω characterizes a complete Gaussian DAG or
UG model, i.e. a graph with no missing edges. The standard parameter prior for Gaus-
sian DAG models with zero expectations is a Wishart distribution, whereas that of UG
models is a G-Wishart distribution. A consequence of the DAG conditional parameter
prior is that, once we specify the parameter prior for one complete DAG model, all other
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priors can be generated automatically (see Consonni and Rocca, 2012). In this paper,
we follow the DAG model framework since it allows us to marginalize out Ω analytically
thereby focusing on the structure inference, and the estimation of the model parameters
given the structure of dependence (see Section 4 for details).

Following Geiger and Heckerman (2002), we assume a prior distribution on the un-
constrained precision matrix, Ω, conditional on any complete DAG, G, for a given lag
order p, is Wishart distributed, with probability density function

P (Ω|p,G) = 1
Kd(ν, S0) |Ω|

(ν−d−1)
2 etr

(
− 1

2ΩS0

)
(12)

where etr(A) = exp{tr(A)} and tr(A) is the trace of a square matrix A, ν is the degree
of freedom parameter, S0 is a d×d symmetric positive definite matrix, with d = ny +np,
the size of the vector of stacked dependent and explanatory variables of the model. The
normalizing constant is:

Kd(ν, S0) = 2 νd2 |S0|−
ν
2 Γd

(ν
2

)
(13)

where Γd(a) = π
d(d−1)

4
∏d
i=1 Γ

(
a + 1−i

2

)
is the multivariate gamma function and Γ(·)

denotes the gamma function.
Based on the assumption that the conditional distribution of the dependent variables

given the set of predictors, is described by equation (1), with parameters {B,Σε}, we
assume the prior distribution on (B,Σε|p,G) is an independent normal-Wishart (see,
e.g. Geiger and Heckerman, 2002; Heckerman and Geiger, 1994). This is one of the prior
distributions extensively applied in the Bayesian VAR literature. Specifically, we assumed
the coefficients matrix B is independent and normally distributed, B|p,G ∼ N (B, V ),
and Σ−1

ε is Wishart distributed, Σ−1
ε ∼ W(ν, S/ν). The prior expectation, B = 0ny×np,

is a zero matrix, and the prior variance of the coefficient matrix, V = Inp×np, is an
identity matrix. Also, the prior expectation of Σε = 1

νS where is S is ny × ny positive
semi-definite matrix and ν > ny − 1 is the degrees of freedom.

4. Bayesian Inference

We define Gs as ny × n binary connectivity matrix that captures the temporal re-
lationship of variables at time t − s with the variables at time t. We denote with
~Gp = (G1, . . . , Gp) as stacked G1, . . . , Gp, such that ~Gp is of dimension ny × np. We
then define ~Gp,i, i = 1, . . . , ny as the local graph associated with the i-th equation which
is the i-th row of ~Gp. We proceed under the assumption that the series of dependent and
explanatory variables is jointly Gaussian, N (0,Ω−1). Moreover, conditional on the lag
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order p, any complete DAG, ~Gp, and an unconstrained precision matrix Ω, the likelihood
function is given by

P (X|p, ~Gp,Ω) = (2π)−
dT0

2 |Ω|
T0
2 etr

(
− 1

2ΩŜ
)

(14)

where Ŝ =
∑T0
i=1 VtV

′
t , sum of squares matrix of dimension d × d. A nice feature of

the unconstrained parameter prior in the DAG mode framework is that it allows for
integrating out analytically, the precision matrix, Ω, with respect to its prior to obtain
a marginal likelihood function for any DAG, ~Gp with lag p given by

P (X|p, ~Gp) =
∫
P (X|p, ~Gp,Ω) P (Ω|p, ~Gp) dΩ = Kd(ν + T0, S0 + Ŝ)

(2π)
dT0

2 Kd(ν, S0)
(15)

where T0 = T − p, S0 and S0 + Ŝ are the prior and posterior sum of square matrices,
which when normalized are Σ = 1

νS0 and Σ̄ = 1
ν+T0

(S0 + Ŝ) respectively. Geiger and
Heckerman (2002) outlined conditions for the integral in equation (15) to be analytically
tractable and to have a close form expression that can be factorized into local marginal
likelihoods. A key assumption is that the parameters must be independent within and
across equations. In VAR models, the errors are correlated across equations which makes
the factorization of (15) quite problematic. Following the idea of large-sample approx-
imation by Kass et al. (1988) and Chickering and Heckerman (1997), we consider the
errors of a large VAR model as unobserved variables which can be ignored when deal-
ing with large datasets (see, e.g. Stock and Watson, 2014). Based on this consideration
and the assumption that the coefficients in B are independent a-priori within and across
equations, we approximate (15) with a pseudo-marginal likelihood given by the product
of local densities

P (X|p, ~Gp) ≈
ny∏
i=1

P (X|pi, ~Gp(yi, πi)) =
ny∏
i=1

P (X (yi,πi)|pi, ~Gp)
P (X (πi)|pi, ~Gp)

(16)

where ~Gp(yi, πi) is the local graph of the i-th equation with yi as dependent variable and
πi as the set of predictors; X (yi,πi) is the sub-matrix of X consisting of yi and πi; and
X (πi) is the sub-matrix of πi. This approximation allows us to develop search algorithms
to focus on local graph estimation. More specifically, a Markov chain Monte Carlo
(MCMC) algorithm using the global score would be less efficient in exploration since the
global score would be insensitive to the proposal of edge deletion or addition. Thus,
the approximation allows the chain to explore the graph locally at equation level. The
pseudo-likelihood has been used in MCMC by Zhou and Schmidler (2009) to circumvent
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the intractable normalizing constant problem in random fields. See also Andrieu and
Roberts (2009); Maclaurin and Adams (2014) for one of the approximated likelihood in
MCMC. The closed form of (16) is given by

P (X di |pi, ~Gp) = π
−Ti|di|

2
|Σ̄di |−

(ν+Ti)
2

|Σdi |
− ν2

|di|∏
i=1

Γ
(
ν+Ti+1−i

2

)
Γ
(
ν+1−i

2

) (17)

where di ∈
{

(yi, πi), πi
}

, and X di is a sub-matrix of X consisting of |di|×Ti realizations,
where |di| is the dimension of di, Ti = T − pi, |Σdi | and |Σ̄di | are the determinants of the
prior and posterior covariance matrices associated with di.

4.1. Posterior Approximation

Inferring jointly the lag and the graph allows for selecting the relevant predictors to
estimate the model parameters (B,Σε). In order to approximate the posterior distribu-
tions of the equations of interest, the standard approach is to consider a collapsed Gibbs
sampling. At the j-th iteration, the sampler consists of the following steps:

1. Sample jointly, p(j), η̄(j) and ~G
(j)
p from P (p, η̄, ~Gp|X ).

2. Estimate B(j) and Σ(j)
ε directly from P (B,Σε|p(j), ~G

(j)
p ,X ).

As regards to the first step, standard MCMC algorithms (Madigan and York, 1995)
such as Gibbs sampling and Metropolis-Hastings (MH) apply only to model selection
with fixed dimensions. In model selection problems with unknown lag order, the di-
mension of the model varies with the lag order. The algorithm extensively applied for
this problem is the reversible jump (RJ) MCMC (Green, 1995). In graphical models
especially, the space of possible graphs increases super-exponentially with the number of
variables (Chickering et al., 2004). Therefore, sampling from a distribution on a union
of varying graph dimension using the RJ algorithm will require a higher number of iter-
ations to thoroughly search the space of all possible graphs. In our graphical VAR, the
inferential difficulty increases due to the random fan-in restriction.

We propose an alternative algorithm for sampling the graph taking into consideration
the random fan-in and estimating the lag order. At the j-th iteration of the Gibbs, we
consider for each equation i = 1, . . . , ny and each lag order pi = p, . . . , p̄, a sample of η̄(j)

i

and ~G
(j)
p,i from P (η̄i, ~Gp,i|pi,X ) ∝ P (η̄i|pi)P (πi|pi, η̄i)P (X|pi, ~Gp,i). By conditioning on

each possible lag order, we are able to apply standard MCMC algorithm thereby avoiding
movement between models of different dimensions since the dimension is fixed for each
lag. After J iterations, we average the draws, ~G(j)

p,i , over J and estimate ~̂Gp,i, for each
pi = p, . . . , p̄, using the criterion discussed in Appendix B.2. This procedure estimates
the local graph for the possible lags of pi ∈ {p, . . . , p̄}. Next, we find (p̂i, Ĝp̂,i) which
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minimizes a penalized local log-likelihood (BIC) score given in (22). Given the estimated
graph and lag order, (p̂i, Ĝp̂,i), we select the relevant predictors for each equation to
estimate the model parameters (B,Σε).

4.2. Graphical Model Selection

Graphical model selection is a challenge since the dimension of the graph space to
explore increases super-exponentially with the number of variables. In this paper we
apply MCMC and build on the MCMC algorithm described in Grzegorczyk and Husmeier
(2011); Madigan and York (1995). Our algorithm differs from that of the above mentioned
papers in two aspects: the initialization and the inclusion of the random fan-in restriction.

As regards to the initialization, we propose a strategy which improves the mixing of
the chain. In MCMC search algorithms the space exploration crucially depends on the
choice of the starting point of the chain. A set of burn-in chain iterations is often used to
have a good starting point. However, Brooks et al. (2011) pointed out that any sample
that is believed to be representative of the equilibrium distribution is an equally good
starting point. In view of this, we propose an initialization which extracts variables (and
their lags) with reliable information to improve predictions of the dependent variables.
Let ~Gp,i denote the local graph of the i-th equation, Vi

p,x, the vector of all possible
explanatory variables with lags up to p for each equation, with p ∈ [p, . . . , p̄], and Vy,
the vector of dependent variables. We run the following steps:

1. Initialize the graph ~Gp as ny × np zero matrix, i.e, ~Gp,i is 1× np zero vector.
2. For each equation, i = 1, . . . , ny:

2a. Test whether or not predictions of yi ∈ Vy is improved by incorporating in-
formation from each xk ∈ Vi

p,x, i.e, P (yi|xk) > P (yi). Following a Minnesota
type of prior, we assume recent lags (specifically lag 1) of dependent variables
are more reliable to influence current realizations. Based on this idea, we set
~Gp(yi, xk) = 1 if xk is equal to lag 1 of yi, and retain xk in Vi

p,x.

2b. For xk not equal to lag 1 of yi, we compare the probability of the null hy-
pothesis, H0 = P (X|pi, ~Gp(yi, ∅)), where ∅ denote the empty set, against the
probability of the alternative, H1 = P (X|pi, ~Gp(yi, {xk})). If H1 > H0, we
reject the null, set ~Gp(yi, xk) = 1 and retain xk in Vi

p,x. If H1 ≤ H0, we set
~Gp(yi, xk) = 0 and remove xk from Vi

p,x.

3. We then denote Np(πi) as the set of variables, x′ks, retained in Vi
p,x.

In our experience, the above initialization provides a good starting point for graphical
model selection. See Figure B.5 for a comparison of the convergence diagnostics of a
random initialization MCMC and our initialization for the graph simulation. Using the
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set Np(πi) of candidate predictors of the dependent variable of the i-th equation, we start
our MCMC search algorithm. We proceed with the local causal search by investigating
the combination of variables in Np(πi) that produces the highest scoring local graph(s).

As regards the inclusion of the random fan-in restriction, we denote with mp =
min{np, T − p}, the maximal number of predictors required to efficiently estimate the
model, for p ∈ [p, . . . , p̄]. At the j-th iteration, let ~G(j−1)

p,i be the current local graph and
π

(j−1)
i , the current set of predictors in ~G

(j−1)
p,i , then for each equation, i = 1, . . . , ny, the

Gibbs iterates the following steps:

1. Draw the sparsity parameter for the forward proposal probability, η̄(∗)
i from a

Be(a, b) and set the fan-in f
(∗)
i = bmpη̄

(∗)
i c.

2. If the number of elements in π
(j−1)
i is less than the fan-in, i.e. |π(j−1)

i | < f
(∗)
i ,

then randomly draw a xk from the set of candidate predictors, Np(πi), and add
or remove the edge between yi and xk, i.e. ~G

(∗)
p (yi, xk) = 1 − ~G

(j−1)
p (yi, xk).

Here we set the forward proposal probability to Q(~G(∗)
p,i |~G

(j−1)
p,i , η̄

(∗)
i ) = 1/|Np(πi)|.

If |π(j−1)
i | ≥ f

(∗)
i , then randomly draw a variable, xk, from the current set of

predictors, π(j−1)
i , and remove the edge between yi and xk, i.e. ~G

(∗)
p (yi, xk) = 0.

In this case, the forward proposal probability is Q(~G(∗)
p,i |~G

(j−1)
p,i , η̄

(∗)
i ) = 1/|π(j−1)

i |.
3. To obtain the reverse proposal probability, we denote π(∗)

i , the set of predictors in
~G

(∗)
p,i taking into consideration the changes made in step 2.

4. Next, we draw the sparsity parameter for the reverse proposal probability, η̄(∗∗)
i

from a Be(a, b) and set f (∗∗)
i = bmpη̄

(∗∗)
i c.

5. If |π(∗)
i | < f

(∗∗)
i , the reverse move will involve a random draw of a variable from

Np(πi) to add or delete from ~G
(∗)
p,i . Thus, the reverse proposal probability is given

by Q(~G(j−1)
p,i |~G(∗)

p,i , η̄
(∗∗)
i ) = 1/|Np(πi)|. If |π(∗)

i | ≥ f
(∗∗)
i , the reverse will randomly

draw a variable from π
(∗)
i to delete from ~G

(∗)
p,i . The reverse proposal probability in

this case is given by Q(~G(j−1)
p,i |~G(∗)

p,i , η̄
(∗∗)
i ) = 1/|π(∗)

i |.
6. From equation (10), the ratio of the local graph priors simplifies to 1 and the

acceptance probability is given by A(~G(∗)
p,i , η̄

(∗)
i |~G

(j−1)
p,i , η̄

(∗∗)
i ) = min{1, RA} where

RA =
{

P (X|pi, ~G(∗)
p,i )

P (X|pi, ~G(j−1)
p,i )

Q(~G(j−1)
p,i |~G(∗)

p,i , η̄
(∗∗)
i )

Q(~G(∗)
p,i |~G

(j−1)
p,i , η̄

(∗)
i )

}
(18)

where P (X|pi, ~Gp,i) = P (X|pi, ~Gp(yi, πi)), and can be computed from equations
(16) and (17). Note that without the fan-in restriction, the proposal distribution
is symmetric, thus, the prior and inverse proposal ratio in (18) simplifies to 1.

7. Sample u ∼ U[0,1] and if u < min{1, RA}, then accept changes made in the local
graph and set ~G(j)

p,i = ~G
(∗)
p,i , otherwise reject changes and set ~G(j)

p,i = ~G
(j−1)
p,i .
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A description of the pseudo-code for the graph selection is given in Appendix D.

4.3. Duality between Priors and Penalties

Thanks to the duality between prior distributions and the penalization of likelihood
functions, it is possible to define an information criterion for choosing the optimal lag
order and estimating the graph for graphical VAR models. This criterion has been used
in the first step of our Gibbs sampler (see Section 4.1) and is defined as:

(p̂, Ĝ) = arg max
p, ~Gp

P (p)P (~Gp|p)P (X|p, ~Gp). (19)

Several authors have considered extensions of the BIC to sparse model selection problems
(see Bogdan et al., 2004; Chen and Chen, 2008; Foygel and Drton, 2011). Our extension
allows for a more stringent penalty to address the tendency of the BIC to select large size
models when dealing with high-dimensional data. To define our lag and graph selection
criteria, we proceed by integrating out the hyper-parameter, η̄i, analytically as follows.

Proposition 2. For choices of the prior distribution P (η̄i|pi) as beta distributed in (8),
and P (πi|pi, η̄i) according to (10), with |πi| = k, η̄i can be explicitly marginalized out as

P (πi|pi) = 1
2npi

mp−1∑
j=0

I{0,...,j}(|πi|)
(
I j+1
mp

(a, b)− I j
mp

(a, b)
)

(20)

where Iz(a, b) =
∫ z

0 (B(a, b))−1(η̄i)a−1(1 − η̄i)b−1 dη̄i, is the incomplete beta function
(Abramowitz and Stegun, 1964, p. 263).

Proof. See Appendix A.2.

Corollary 4.1. A uniform prior on η̄i, means a = b = 1 and yields

P (πi|pi) = 1
2npi

(
1− |πi|

mp

)
(21)

Proof. See Appendix A.3.

Proposition 3. Let P (πi|pi) be the local graph prior given in (21) evaluated at the values
of πi such that |πi| = k. If ϕ(k) = − logP (πi|pi) is considered a function of πi, with
|πi| = k, k = 0, . . . , npi, then ϕ(k) is a convex function given pi > 0 and n > 0.

Proof. See Appendix A.4.
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From (21), it follows that P (πi|pi) ≤ 1
2npi ,∀|πi| ≤ mp. We define a criteria for graph

and lag order selection for each equation the following

BIC(pi, ~Gp,i) = −2 logP (X|pi, ~Gp,i) + |πi| log T + 2npi log 2 (22)

where ~Gp,i is the i-th equation local graph, πi the set of selected predictors and |πi| the
number of variables in πi. Following a similar approach proposed by Chib and Greenberg
(1995), we use the estimated graph ~̂Gp,i to evaluate the score and to select the lag order
p̂i. Selecting the local graph and lag order for each equation may automatically produce
asymmetric lags for the different equations.

4.4. Model Estimation

The posterior of Ω conditional on the lag order p̂ and a given graph Ĝp is Wishart
distributed (see Geiger and Heckerman, 2002). Since Ω is directly related to B and
Σε, (see Proposition 1), we proceed with the posterior estimation of the model param-
eters focusing on B and Σε. Thus we estimate B̂ and Σ̂ε from P (B,Σε|p̂, Ĝp,X ) with
an independent normal-Wishart. By conditioning on Ĝp, we estimate the parameters
{B̄G,i, V̄G,i} that corresponds to the non-zero elements of the i−th equation graph Ĝp,i.
We define the selection matrix Ei = (ej1 , . . . , ej|πi|), where Ei is of dimension np× |πi|,
jk ∈ πi is an element of the set of predictors of the i-th equation, and ek is the standard
orthonormal basis of the set of real np-dimensional vectors. The posterior mean and
variance of {B̄G,i, V̄G,i} is given by

B̄G,i = V̄G,i(V −1
G,iBG,i + σ̄−2

i W ′G,iYi) (23)

V̄G,i = (V −1
G,i + σ̄−2

i W ′G,iWG,i)−1 (24)

with
WG,i = WEi, BG,i = BiEi, VG,i = E′iV iEi (25)

where WG,i ∈ W ′, is the set of selected predictors of the i-th equation; W ′ is stacked
W ′1, . . . ,W

′
T0

, such that W ′ is of dimension T0 × np; Y is stacked Y ′1 , . . . , Y
′
T0

, such that
Y is of dimension T0×ny; Yi is the i-th column of Y ; BG,i and V G,i, are the prior mean
and variance of WG,i respectively; σ̄2

i , i = 1, . . . , ny, is the variance of residuals from the
posterior of Σε, where the posterior of Σ−1

ε is Wishart distributed with scale matrix

S̄ = S + (Y ′ − B̄W ′)′(Y −WB̄′) (26)

and degrees of freedom ν̄ = ν + T0, where B̄ = (B̄G,1, . . . , B̄G,ny ), the stacked posterior
mean of the coefficients, such that B̄ is of dimension ny × np with positions of non-zero
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elements corresponding to non-zero elements in Ĝp.

5. Simulation Study

5.1. Metrics for Performance Evaluation
We investigate the effectiveness of our graphical approach with the sparsity prior

against one without sparsity prior together with the LASSO of (Tibshirani, 1996) and
the Elastic-net (ENET) of Zou and Hastie (2005). We evaluate the efficiency of the
algorithms in terms of the estimated graph, the predictive performance of the estimated
models on out-of-sample observations and computational cost in terms of run time.

Given the graph of the data generating process (DGP), we extract from the estimated
graph the number of true links correctly predicted as TP ; FP as number of true zero
edges predicted as positives; TN as number of true zero edges correctly predicted; and
FN as number of true links unidentified. We evaluate the graph estimation performance
based on the number of predicted positive links (PP = TP + FP ), the graph accuracy
(ACC) and precision (PRC) given as

ACC = TP + TN

TP + TN + FP + FN
PRC = TP

TP + FP
(27)

Furthermore, we evaluate the graph estimation performance in terms of log-likelihood
and BIC scores. Following the expression in (22), the graph BIC is obtained as

BICG =
ny∑
i=1

BIC(pi, ~Gp,i) = −2LG +
ny∑
i=1

(|π̂i| log T + 2np̂i log 2) (28)

where LG =
∑ny
i=1 Li, with LG is the log-likelihood of the estimated graph and Li =

logP (X|pi, ~Gp(yi, πi)) is the log-likelihood of the local graph of the i-th equation.
We evaluate the model estimation performance based on the out-of-sample joint den-

sity and point forecasts. The log-predictive score (LPS) is the most common measure
of the joint predictive density discussed in the literature. Since the competing models
might have different number of variables and lags across the equations, the predictive
AIC presents a meaningful comparison for purposes of parsimony and is given by

AICM = − 2 logP (Yτ1 |Xτ0 ; B̂, Σ̂ε) + 2|B̂| (29)

for τ1 = τ0 +1, . . . , T , where τ0 is the number of observations for the training sample, Xτ0

is the training sample dataset; Yτ1 is the out-of-sample observations of the dependent
variables; |B̂| is the number of non-zero coefficients in B̂; Σ̂ε is the estimated error
covariance matrix; and logP (Yτ1 |Xτ0 ; B̂, Σ̂ε) is the log predictive score.
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For point forecast, the mean squared forecast error (MSFE) is the most common
measure discussed in the literature. To compare the joint point forecasts, we compute
the mean MSFE (MMSFE) following

MMSFE = 1
T − τ0 − 1

T∑
τ1=τ0+1

( 1
ny

ny∑
i=1

(Y iτ1
− Ŷ iτ1

)2
)

(30)

where Y iτ1
and Ŷ iτ1

are the out-of-sample observed and predicted values of the i-th de-
pendent variable respectively.

5.2. Simulation Study Set-up and Results

The set-up of the data generating process (DGP) of the simulated study is as follows

Yt = BXt−1 + εt, εt
iid∼ N (0, Iny ) (31)

t = 1, . . . , T , where Iny is ny dimensional identity matrix, B is ny ×n coefficient matrix,
Yt and Xt are is a ny × 1 and n × 1 respectively. To analyze different sparsity levels,
we generate the coefficients matrix B such that, the number of non-zero coefficients for
each equation is drawn from a uniform on {0, . . . , 40}. We considered a large dimensional
model by setting ny = 10, n = 100. We replicate the simulation and estimation exercises
100 times. The 100 replicatons have been conducted on a cluster multiprocessor system
which consists of 4 nodes; each comprises four Xeon E5-4610 v2 2.3GHz CPUs, with 8
cores, 256GB ECC PC3-12800R RAM, Ethernet 10Gbit, 20TB hard disk system with
Linux. The simulation study in Table 1 takes about 14 minutes of CPU time. For each
replication, we generate a sample size, T = 60 and use T0 = 50 for model estimation and
10 for out-sample forecast analysis.

We run 20,000 Gibbs iterations for the graph estimation and 2000 iterations for
parameter estimations. We applied the standard approach of (Tibshirani, 1996) and Zou
and Hastie (2005) for the LASSO and ENET estimation respectively. We set p = 1 and
p̄ = 4 and implement a parallel estimation for the LASSO and ENET. For each p ∈ [p, p̄],
we sequentially use one variable as the dependent variable and the remaining as the
predictors. We apply a five-fold cross validation to select the regularization parameter λ
with minimal plus one standard error point (index1SE).

Figure B.6 shows the convergence diagnostics of the graph simulation and the local
graph BIC for the lags. The figure of the PSRF indicates convergence of the chain. We
also notice from Figure B.6d that the posterior distribution on the lag order for each
equation of the simulation experiment using our modified BIC favors lag order p = 1.
We report in Table 1, the performance of the LASSO, ENET, BGVAR and SBGVAR for
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the inference of the DGP in (31).

LASSO ENET BGVAR SBGVAR
DGP Average number of links = 201.5

PP 108.40 131.30 249.42 69.88
TP 62.04 67.92 97.76 48.62
ACC 95.35 95.08 93.61 95.65
PRC 58.06 51.85 39.31 69.58
LG 145.28 169.83 242.35 160.71
BICG 1457.40 1509.23 1837.14 1307.80
LPS -243.07 -304.32 -236.79 -166.49
AICM 702.94 871.24 972.42 472.74
MMSFE 0.67 0.69 0.62 0.59
Time (in seconds) 55.76 50.18 162.52 42.47

Table 1: Average graph and model estimation performance of algorithms over 100 replications. PP -
number of predicted positive links; TP - number of true positive links; ACC - graph accuracy; PRC
- graph precision; LG - graph log-likelihood; BICG - graph BIC; LPS - log predictive score; AICM -
predictive AIC; and MMSFE - mean of MSFE. Bold values indicate the best choice for each metric.

We proceed by comparing the effectiveness of the algorithms in estimating the graph
of the true DGP, when the DGP average links number is 201.5. Table 1 shows that
without the sparsity prior distribution, the BGVAR overestimates the number of links
compared to the other algorithms. The Lasso-type methods (LASSO and Elastic-Net)
fall in the middle with a lower number of links compared to that of the DGP. The
SBGVAR on the other hand recorded the least number of edges. This is quite expected
since the idea is to select the subset of the explanatory variables that explains a large
variation in the dependent variables.

By including more edges than the true DGP, the graphical search algorithm without
sparsity prior (BGVAR) records the highest true positive links but relatively low accuracy
and precision compared to the other algorithms. Again the Lasso-type methods fall in
the middle, recording a lower number of true positive links but with a higher accuracy
and precision than the BGVAR. The sparsity prior graphical approach instead had the
least number of true positive edges but tends to be more accurate and much precise than
the other algorithms. The log-likelihood score of the graph favored the BGVAR but the
graph BIC score favored the SBGVAR. Thus the BIC score confirms the outcome of the
graph accuracy metric which shows that though the SBGVAR records the least edges,
it produced a better representation of the temporal dependence in the simulated dataset
than the Lasso-type methods and the BGVAR.

The log predictive score, predictive AIC and the MMSFE all favor the SBGVAR over
the other competitors. One would expect the Lasso-type methods to perform better
than the graphical VAR, however this is not the case according to the above simulation
results. This is attributable to the fact that the Lasso-type techniques perform both
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model selection and parameter estimation simultaneously. This may seem to be an
advantage but on the other hand it affects the estimated parameters, since it shrinks all
coefficients at the same rate (see Gefang, 2014). In addition, the Lasso-type methods only
focus on estimating the coefficients in each equation neglecting the interaction among the
errors across the different equations. The graphical approach instead focus on selecting
and estimating only the coefficients of relevant variables taking into consideration the
interaction among the errors across the different equations. Thus the latter achieves
better parameter estimation efficiency than the Lasso-type models. The result shows that
the sparsity prior on the graph enables us to identify the small set of the most influential
explanatory variables that explains a large variation in the dependent variables. Also,
the SBGVAR produce a more parsimonious model with better out-of-sample forecasts
than the Lasso-type methods.

On the computational intensity, the SBGVAR spends less time than the other algo-
rithms. Interestingly, it records about one-fourth of the run time of the BGVAR. Thus,
the sparsity prior of the fan-in restriction helps to reduce the run time by considering
a relatively lower search space in terms of the number of combinations of explanatory
variables. The higher run time of the Lasso-type methods is due to the cost of cross-
validation to select the regularization parameter.

5.3. Sparsity and Indeterminacy Evaluation

A system of linear equations is said to be under-determined (or indeterminate) when
the number of parameters to estimate exceeds the number of observations (see Donoho,
2006). Such systems can be modeled by exploiting sparsity. Here, we investigate the
performance of the graphical model approaches against the standard Lasso-type methods
for different level of indeterminacy and sparsity of the DGP.

For a VAR model with ny dependent variables and n explanatory variables for each
equation, with a maximum lag order p, we have a total of nynp number of coefficients
to estimate. Given a multiple time series with T observations, the total number of
observations of the dependent variables is given by (T − p)ny. Following Donoho (2006),
we measure the level of indeterminacy by δ = (T − p)ny/nynp = (T − p)/np, and the
level of sparsity by ρ = kny/(T − p)ny = k/(T − p), where k is the number of non-zero
coefficients in each equation of the DGP.

Following Donoho and Stodden (2006), we formulate our experiment by setting the
DGP to generate a VAR model with ny = 10, n = 100 and lag order p = 1. For different
level of indeterminacy, we set T − p to take values {20, . . . , 100}. For each T − p, we
generate for each equation, k = dρ(T − p)e, where ρ takes values {0.2, 0.3, . . . , 1}. This
is to allow for different sparsity levels for each level of indeterminacy.
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We proceed by comparing the effectiveness of the LASSO, ENET, BGVAR and SBG-
VAR in estimating the true DGP by setting p = p̄ = 1. For each T and k, we replicate
the simulation and estimation exercise 10 times with the magnitude of the coefficients
drawn from a uniform on [−1, 1]. In each replication, we estimate the model and perform
a 1-step ahead forecast. Figure 1 shows the estimation performance of the algorithms for
the different levels of indeterminacy averaged over the different levels of sparsity.
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Figure 1: Estimation performance of the algorithms for different level of indeterminacy averaged over
different level of sparsity. The LASSO is in green, ENET in blue, BGVAR in red and SBGVAR in cyan.

Figure 1a shows the difference between the average DGP number of links and the
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estimated links of the algorithms. Except for the BGVAR, all the other algorithms
estimated a lower number of links compared to that of the DGP. More specifically, the
BGVAR seems to overestimate the number of DGP links for lower under-determined
models, whereas the SBGVAR underestimates the number of DGP links regardless of
the level of indeterminacy. We also see that, the difference between the DGP and the
estimated links of the BGVAR and SBGVAR increases overtime while the Lasso-type
methods are relatively stable regardless of the level of indeterminacy.

The graph accuracy in Figure 1b shows that all the algorithms experienced a de-
terioration in the accuracy of the prediction of the graph associated with the DGP.
However, on average the SGBVAR performs slightly better at the graph estimation for
lower under-determined models than the Lasso-type methods.

In Figure 1c, the graph BIC of the algorithms increases with the level of indeter-
minacy. This is not surprising since the BIC is a direct function of the number of
observations which increases with the level of indeterminacy. Again we observe that the
graph BIC score favors the graph estimated by the SBGVAR over the other competing
algorithms. This shows that though the SBGVAR recorded the minimum number of
links, it produce a better representation of the graph associated with the DGP.

For model estimation performance, Figure 1d shows that all the algorithms perform
better at out-of-sample point forecasts for higher under-determined models. The MMSFE
of the algorithms are not significantly different though we find that it favors the SBGVAR
for lower under-determined models. The predictive AIC (in Figure 1e) on the other
strongly favors the SBGVAR for all level of indeterminacy.

On the computational intensity, we notice (from Figure 1f) an increase in run time
with the level of indeterminacy for all algorithms except the BGVAR which seems slightly
constant over time. Overall, the Lasso-type methods achieve a lower run time for lower
under-determined models whiles the SBGVAR achieves lower run time for higher under-
determined models.

We focus attention on the model estimation performance of the algorithms for the dif-
ferent levels of indeterminacy and sparsity. Figure 2 shows the heatmap of the predictive
AIC of the models of the algorithms estimated over the levels of sparsity and indetermi-
nacy of the DGP. The color bar shows the different range of values of the predictive AIC,
where blue represents lower AIC, and red for highest AIC. Clearly, we notice a signifi-
cant difference between the results of the Lasso-type methods and that of the graphical
model approaches. Thus the LASSO and ENET are not significantly different from each
other, whiles the BGVAR and SBGVAR are quite different, dominated by cyan and blue
respectively. The figure shows that the predictive AIC favor the SBGVAR over all levels
of sparsity and indeterminacy. The Lasso-type methods only performs better than the
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(d) SBGVAR Predictive AIC

Figure 2: Heatmap of the predictive AIC of the models estimated by the four algorithms over the
different levels of indeterminacy and sparsity in the data generating process. The result is an average
of 10 replication exercises for each δ and ρ. The color bar shows the different range of values of the
predictive AIC, where blue represents lower AIC, and red for highest AIC.

BGVAR for lower under-determined models with different level of sparsity, whiles the
BGVAR dominates in higher under-determined models.

The results of this exercise confirm that of our first simulation experiment. Firstly, the
sparsity prior on the graph space induces sparsity on the estimated graph of the temporal
relationship among the variables. Secondly, the random fan-in restriction helps to reduce
the computational complexity by considering a relatively lower search space in terms
of the number of combinations of explanatory variables. Thirdly, though the SBGVAR
under-estimates the number of links compared to the DGP and other algorithms, it is able
to identify the small set of the most influential explanatory variables that explains a large
variation in the dependent variables. Thus, the SBGVAR produces a more parsimonious
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model with competitive out-of-sample joint point forecasts and better density forecasts
than the competing models.

6. Forecasting VAR with Many Predictors

Several studies have shown empirically that applying large VAR models for macroe-
conomic time series produces better forecasts than standard approaches (see Banbura
et al., 2010; Carriero et al., 2013; Giannone et al., 2005; Koop, 2013; Stock and Watson,
2012). In the literature, researchers typically work with a single model with fixed or time
varying coefficients (see Koop and Korobilis, 2013). It is therefore important to allow
for changes in structure and/or parameters to understand the dynamic evolution of the
relationship among variables. As part of our contribution, we apply our graphical scheme
to model and forecast selected macroeconomic variables with large number of predictors.

The dataset is quarterly observations of 130 US-macroeconomic variables. All series
were downloaded from St. Louis’ FRED database and cover the quarters from 1959Q1 to
2014Q3. Some series had missing observations which are completed with earlier version
of the database used by Korobilis (2013). We follow the adjustment codes of De Mol et al.
(2008); Stock and Watson (2012) and Korobilis (2013) to transform all the series into sta-
tionarity. See Appendix C for the list of series and adjustment codes. We consider 6 series
as dependent variables and the remaining 124 as predictors. The dependent variables are:
consumer price index (CPIAUCSL), Federal funds rate (FEDFUNDS), real gross domes-
tic product (GDPC96), real gross private domestic investment (GPDIC96), industrial
production index (INDPRO) and real personal consumption expenditure (PCECC96).

We set the minimum and maximum lag order equal to p = 1 and p̄ = 4 respectively
according to the literature. We consider a moving window with a starting sample from
1960Q1 to 1970Q4 to estimate the model and to forecast 1 to 4-quarters ahead. We then
move the window forward by 4-quarters. Our last sample covers 2003Q1 to 2013Q4, and
the final forecast is up to 2014Q3.

Figures B.7 in Appendix B show the convergence diagnostics of the graph simulation
and the local graph BIC for the lags for the macroeconomic application. The figure of
the PSRF indicates convergence of the chain. Clearly, the global log score of the graph
seems to increase with the lag order in Figure B.7b whereas the total number of links
of the different lags seems quite close as displayed in Figure B.7a. However, we notice
from Figure B.7d that the posterior distribution on the lag order for each equation of
the macroeconomic application using our modified BIC score favors lag order p = 1.

We report in Figure 3, the graph and model estimation performance of the Lasso-
type methods and the graphical VAR approaches in modeling and forecasting the selected
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Figure 3: Performance of the algorithms in modeling and forecasting selected macroeconomic variables
with many predictors over the sample period 1960Q1−2014Q3. Figures 3a - 3c show the graph estimation
performance, whilst 3d - 3f depict the model estimation performance.

macroeconomic variables over the sample period 1960Q1 − 2014Q3. The graph estima-
tion performance is compared in terms of the number of link (PP - predicted positive
edges), the log-likelihood of the graph (LG) and the BIC score of the graph (BICG). The
model estimation performance is compared in terms of the log predictive score (LPS), the
predictive AIC (AICM ) and the average of the mean squared forecast errors (MMSFE).
Table 2 presents the averages of the graph and model estimation performance of the
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algorithms including the computational time over the sample period.
From Figure 3, we observe that the BGVAR estimated more edges than the other

algorithms in a greater part of the sample period. This is followed by the Lasso-type
methods, (ENET, then the LASSO) and the SBGVAR records the least number of links
over the entire sample period. In scoring the estimated graphs, the BGVAR obtained the
highest log likelihood over the entire period whiles the SBGVAR records the minimum
at the beginning but showed significant improvement over the rest of the sample period.
The BIC score of the graph however favored the SBGVAR over the other algorithms.
The summary of the averages in Table 2 shows that the by including more edges than
the other algorithms the BGVAR records the highest log likelihood of the graph whilst
the SBGVAR with the least number of links obtained the minimum BIC score indicating
that the SGBVAR graph presents a better representation of the temporal dependence in
the macroeconomic application than the Lasso-type methods and the BGVAR.

Figure 3d shows the evolution of the out-of-sample joint point forecasts of the models
estimated by the algorithms. We observe from the plot that the MSFE are not very
different from each other. However, in terms of the out-of-sample joint density forecasts,
the BGVAR model presents the minimum cumulative log predictive score and that of
the SBGVAR model dominates the LASSO but is very competitive against the ENET
model. When adjusted for the number of selected variables used for the forecasting
analysis, the SBGVAR model obtain the minimum predictive AIC whilst the BGVAR
model performed worst than the Lasso-type models. From Table 2, we see that on average
the Lasso-type models obtain the minimum MMSFE and this indicate that they produce
slightly better point forecasts than the graphical approaches. The average log predictive
score and AIC on the other hand are in favor of the SGBVAR over the Lasso-type models.

LASSO ENET BGVAR SBGVAR
PP 25.14 39.09 70.82 13.50
LG 372.26 379.45 437.21 400.05
BICG 434.09 473.71 481.01 333.46
LPS -36.87 -34.33 -44.36 -33.79
AICM 124.01 146.84 230.36 94.57
MMSFE 1.30 1.26 1.24 1.32
Time (in seconds) 57.93 42.26 65.74 23.77

Table 2: Average graph and model estimation performance of algorithms in modeling and forecasting
selected macroeconomic series from 1960Q1 − 2014Q3. PP - number of predicted positive edges; LG

- graph log-likelihood; BICG - graph BIC; LPS - log predictive score; AICM - predictive AIC; and
MMSFE - mean of MSFE. Bold values indicate the best choice for each metric.

On the computational intensity, the result shows that on average the SBGVAR spends
less simulation time on graph sampling and parameter estimation than the other algo-
rithms. Interestingly, it records about one-fourth of the run time of the BGVAR.
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Figure 4: Frequency of inclusion of the most influential variables that explain a large variation in the
dependent variables of the macroeconomic application averaged over the sample period 1960Q1−2014Q3.
CPIAUCSL is consumer price index, FEDFUNDS - Federal funds rate, GDPC96 - real gross domestic
product, GPDIC96 - real gross private domestic investment, INDPRO - industrial production index and
PCECC96 - real personal consumption expenditure.
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In summary, we find evidence that the graphical VAR approach with our new graph
prior distribution induces sparsity on the graph structure. In modeling and forecasting
our selected macroeconomic series, the result shows that the SBGVAR better represents
the temporal dependence, since it is more parsimonious than the competitors. Further-
more, we find evidence of a gain in the predictive performance of the SBGVAR approach
over the Lasso-type methods. It is also less computationally intensive compared to the
graphical approach without sparsity prior and the Lasso-type methods.

In Figure 4, we report the frequency of the most influential variables that explain a
large variation in the dependent variables of the macroeconomic application, averaged
over the sample period 1960Q1−2014Q3. For convenience and clarity of presentation, we
report only the top explanatory variables of real investment (GPDIC96) with frequency
up to 14%. We find strong evidence supporting the effect of financial variables on the
real sector of the US economy. More specifically, we find that over the sample period,
S&P 500 and exchange rates especially with Japan, Switzerland and UK, have strong
effects on real investment (GPDIC96) and industrial production index (INDPRO), and
weak effects on real gross domestic product (GDPC96) and on the Federal funds rate
(FEDFUNDS). The results are in line with the recommendation by Diebold and Yilmaz
(2015) suggesting the importance of monitoring the connectedness between real activity
and stock returns (or financial variables). Furthermore, it offers some insight for further
evaluation of macro-financial linkages which have long been at the core of the IMF’s
mandate to oversee the stability of the global financial system. The figure also shows
that apart from real investment and industrial production index, that report a higher
number of predictors over the sample period, the rest can be predicted by a handful of
macroeconomic variables.

7. Conclusion

This paper develops a Bayesian approach to model dependence in high-dimensional
multivariate time series and to address over-parametrization in large vector autoregressive
(VAR) models. The methodology discussed in the paper is based on combining graphical
model notion of causality with a new sparsity prior distribution on the graph space
to address model selection problems in multivariate time series of large dimension. In
particular, this work builds on the application of restriction on the explanatory variables
(fan-in) in the VAR model by allowing for different prior information level about the
maximal number of predictors for each equation. This prior distribution proves to be
efficient in reducing the number of possible combinations of predictors to explore for
each equation when determining the dependence in a large VAR model. Furthermore,
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the Bayesian paradigm allows us to take into account uncertainties about the maximum
lag order, the dependence structure and coefficients of the VAR through model averaging.

In both simulation study and empirical macroeconomic application to real datasets,
we find evidence that our sparsity prior distribution enables us to control the fraction of
explanatory variables with temporal causal effect on the dependent variables. The com-
parison with the standard Lasso-type methods (LASSO and Elastic-Net) as a benchmark
shows that our model is more sparse and parsimonious than the benchmark. The results
show that, compared to the competing methods, the sparse graphical approach is able to
recover the small set of predictors that explains a large variation in the dependent vari-
ables of the large VAR model. More specifically, the BIC score of the graph of temporal
dependence and the predictive AIC of the estimated model all favor the sparse graphical
VAR model over the Lasso-type methods. Furthermore, we fine evidence of a gain in
sampling the graph of the temporal dependence among variables which allows to impose
zero restrictions supported by the data on the non relevant components of the predictors
in order to estimate the coefficients of the selected variables. On the macroeconomic ap-
plication, we find evidence supporting the effect of financial variables on the real sector
of the US economy. Thus, our methodology and result offers insight for further research
into empirical evaluation of macro-financial linkages which has long been the core of the
IMF’s mandate to oversee the stability of the global financial system.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Proof. Let Xt be n × 1 vector of observations at time t, Yt ⊆ Xt a ny × 1 vector of
dependent variables, Wt the stacked lags of Xt, where Wt = (X ′t−1, . . . , X

′
t−p)′ is of

np × 1 dimension, with p as the maximum lag order. Suppose the joint distribution
of (Y ′t ,W ′t ) ∼ N (µ,Ω−1), where µ is the ((np + ny) × 1) vector of means and Ω−1 is
(np+ ny)× (np+ ny) matrix of covariances. Without loss of generalization, we assume
µ is a zero vector.

Suppose the marginal distribution of Wt ∼ N (0,Σww) and the conditional distribu-
tion of Yt|Wt ∼ N (BWt,Σε), where B is ny×np matrix of coefficients and Σε is ny×ny
covariance matrix of the errors. Then given Ω as the precision matrix of (Yt,Wt), we can
obtain Σ = Ω−1 which can be expressed as

Σ =
(

Σyy Σyw
Σwy Σww

)
(A.1)

where Σwy is np×ny the covariances between Wt and Yt, and Σyy is ny×ny covariances
among Yt. Then B and Σε can be obtained from Σ by

B = ΣywΣ−1
ww, Σε = Σyy − ΣywΣ−1

wwΣwy (A.2)

Now given Σ as in (A.1), Ω = Σ−1 can be obtained as:

Ω =
(

(Σyy − ΣywΣ−1
wwΣwy)−1 −(Σyy − ΣywΣ−1

wwΣwy)−1ΣywΣ−1
ww

−(Σww − ΣwyΣ−1
yy Σyw)−1ΣwyΣ−1

yy (Σww − ΣwyΣ−1
yy Σyw)−1

)
(A.3)

To complete the proof, we report the well-known Sherman-Morrison-Woodbury formula
(see Woodbury, 1950). Thus, the inverse of a partitioned symmetric matrix is given by

(A11 −A12A
−1
22 A21)−1 = A−1

11 +A−1
11 A12

(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11

−(A11 −A12A
−1
22 A21)−1A12A

−1
22 = −A−1

11 A12(A22 −A21A
−1
11 A12)−1 (A.4)

Following (A.4) and the expressions in (A.2), (A.3) can be simplified as

Ω =
(

Σ−1
ε −Σ−1

ε B

−B′Σ−1
ε Σ−1

ww +B′Σ−1
ε B

)
(A.5)
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Appendix A.2. Proof of Proposition 2
Proof. From the prior distributions in (8) and (10), η̄i can be marginalized out as

P (πi|pi) = 1
2npi

∫ 1

0
I{0,...,fi}(|πi|)

1
B(a, b) (η̄i)a−1(1− η̄i)b−1 dη̄i (A.6)

where fi = bη̄impc with mp = min {npi, T − pi}, I{0,...,fi}(|πi|) is the indicator function

I{0,...,fi}(|πi|) =



I{0}(|πi|), 0 ≤ η̄i < 1
mp

... · · ·
I{0,...,mp−1}(|πi|), mp−1

mp
≤ η̄i < 1

I{0,...,mp}(|πi|), η̄i = 1

(A.7)

Let f(η̄i) = (B(a, b))−1 η̄a−1
i (1− η̄i)b−1. From (A.6)

P (πi|pi) = 1
2npi

[
I{0}(|πi|)

∫ 1
mp

0
f(η̄i) dη̄i + . . .+ I{0,...,mp−1}(|πi|)

∫ 1

mp−1
mp

f(η̄i) dη̄i
]

= 1
2npi

[mp−1∑
j=0

I{0,...,j}(|πi|)
(
I j+1
mp

(a, b)− I j
mp

(a, b)
)]

(A.8)

where Iz(a, b) =
∫ z

0 f(η̄i)dη̄i is the incomplete beta function (Abramowitz and Stegun,
1964, p. 263).

Appendix A.3. Proof of Corollary 4.1
Proof. By assuming a uniform prior on η̄i, f(η̄i) = 1. Furthermore, the difference between
the incomplete beta functions in (A.8) is I j+1

mp

(a, b)− I j
mp

(a, b) = 1
mp

. Thus

P (πi|pi) = 1
2npi

1
mp

mp−1∑
j=0

I{0,...,j}(|πi|) = 1
2npi

(
1− |πi|

mp

)
(A.9)

Appendix A.4. Proof of Proposition 3
Proof. The function ϕ(k) is convex if and only if ϕ′′(k) > 0, ∀k. By defining ϕ(k) =
− logP (πi|pi) = npi log(2) + log(mp)− log(mp − k), for |πi| = k, it can be shown that

ϕ′′(k) = 1
(mp − k)2 > 0 (A.10)
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Appendix B. Convergence Diagnostics and Posterior Approximation

Appendix B.1. Convergence Diagnostics

For our graphical approach, we monitor the convergence of the MCMC chain using
the potential scale reduction factor (PSRF), see Gelman and Rubin (1992). See also
Casella and Robert (2004), ch. 12, for a review on methods for convergence monitoring
in MCMC. The PSRF monitors the within-chain and between-chain covariances of the
global log posterior densities of the sampled structures to test whether The chain is
said to have properly converged if PSRF ≤ 1.2. Figure B.5 display a comparison of
the MCMC convergence diagnostics for a random initialization and our initialization
procedure of the graph averaged over lags. Figures B.6 and B.7 shows plots of links and
graph score at each MCMC iteration, the local graph BIC for the lags for the simulation
experiments and the macroeconomic application respectively.
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Figure B.5: Comparison of the MCMC convergence diagnostics for a random initialization (in blue) and
our initialization (in green) procedure of the graph averaged over lags. The black dashed line is 1.2, and
colored lines close to this line indicate convergence of the chain.

Appendix B.2. Edge Posterior Approximation

We estimate the posterior probability of the edge by êij , which is the average of the
MCMC samples from the Gij posterior distribution. For variable selection purposes,
we define the estimator G∗ij of the edge from Xj to Xi based on a one sided posterior
credibility interval for the edge posterior distribution, and find the interval lower bound
G∗ij = 1 if êij − z(1−α)

√
êij(1−êij)
neff

> 0.5, where neff is the effective sample size rep-
resenting the number of independent posterior samples of the graph, and z(1−α) is the
z-score of the normal distribution at the (1− α) significance level.
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Figure B.6: Plots of (B.6a) links and (B.6b) graph score at each MCMC iteration, with (B.6c) conver-
gence diagnostics and (B.6d) local graph BIC for the lags for each equation of the simulation experiments.
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Figure B.7: Plots of (B.7a) links and (B.7b) graph score at each MCMC iteration, with (B.7c) con-
vergence diagnostics and (B.7d) local graph BIC for the lags for each equation of the macroeconomic
application.
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Appendix C. Data Description For Large Macroeconomic Application

Table C.3 provides a description and stationarity transformation codes used for our
large macroeconomic application in Section 6.

Appendix D. Pseudo-Code for Sparse Graph Selection

Algorithm 1 presents a description of the pseudo-code for the sparse graphical model
selection.
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No. Mnemonic Description Tcode
1 CPIAUCSL* Consumer Price Index for All Urban Consumers: All Items 6
2 FEDFUNDS* Effective Federal Funds Rate 2
3 GDPC96* Real Gross Domestic Product, 3 Decimal 5
4 GPDIC96* Real Gross Private Domestic Investment, 3 decimal 5
5 INDPRO* Industrial Production Index 5
6 PCECC96* Real Personal Consumption Expenditures 5
7 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
8 AHECONS Ave Hr Earnings Of Prod & Nonsupervisory Employees: Construction 6
9 AHEMAN Ave Hr Earnings of Prod & Nonsupervisory Empl: Manufacturing 6
10 AWHMAN Ave Wkly Hr of Prod & Nonsupervisory Empl: Manufacturing 5
11 AWOTMAN Ave Wkly Overtime Hrs of Prod & Nonsup. Empl: Manufacturing 5
12 BAA Moody’s Seasoned Baa Corporate Bond Yield 2
13 BORROW Total Borrowings of Depository Institutions from the Federal Reserve 6
14 BUSLOANS Commercial and Industrial Loans, All Commercial Banks 6
15 CBIC96 Real Change in Private Inventories 1
16 CCFC Corporate: Consumption of Fixed Capital 6
17 CIVPART Civilian Labor Force Participation Rate 5
18 CONSUMER Consumer Loans at All Commercial Banks 5
19 CP Corporate Profits After Tax (without IVA and CCAdj) 6
20 CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel 6
21 CPIENGSL Consumer Price Index for All Urban Consumers: Energy 6
22 CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy 6
23 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care 6
24 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation 6
25 CPIUFDSL Consumer Price Index for All Urban Consumers: Food 6
26 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food 6
27 CURRCIR Currency in Circulation 6
28 CURRSL Currency Component of M1 6
29 DEMDEPSL Demand Deposits at Commercial Banks 6
30 DIVIDEND Corporate Profits after tax with IVA and CCAdj: Net Dividends 6
31 DMANEMP All Employees: Durable goods 5
32 DPIC96 Real Disposable Personal Income 6
33 EMRATIO Civilian Employment-Population Ratio 5
34 EXCAUS Canada / U.S. Foreign Exchange Rate 5
35 EXJPUS Japan / U.S. Foreign Exchange Rate 5
36 EXPGSC96 Real Exports of Goods & Services, 3 Decimal 5
37 EXSZUS Switzerland / U.S. Foreign Exchange Rate 5
38 EXUSUK U.S. / U.K. Foreign Exchange Rate 5
39 FINSLC96 Real Final Sales of Domestic Product 5
40 GCEC96 Real Government Consumption Expenditures & Gross Investment 5
41 GDPDEF Gross Domestic Product: Implicit Price Deflator 5
42 GPDICTPI Gross Private Domestic Investment: Chain-type Price Index 6
43 GS1 1-Year Treasury Constant Maturity Rate 2
44 GS10 10-Year Treasury Constant Maturity Rate 2
45 GS3 3-Year Treasury Constant Maturity Rate 2
46 GS5 5-Year Treasury Constant Maturity Rate 2
47 GSAVE Gross Saving 5
48 HOUST Housing Starts: Total: New Privately Owned Housing Units Started 4
49 HOUST1F Privately Owned Housing Starts: 1-Unit Structures 4
50 HOUST5F Privately Owned Housing Starts: 5-Unit Structures or More 4
51 HOUSTMW Housing Starts in Midwest Census Region 4
52 HOUSTNE Housing Starts in Northeast Census Region 4
53 HOUSTS Housing Starts in South Census Region 4
54 HOUSTW Housing Starts in West Census Region 4
55 IMPGSC96 Real Imports of Goods & Services, 3 Decimal 5
56 INVEST Securities in Bank Credit at All Commercial Banks 5
57 IPBUSEQ Industrial Production: Business Equipment 5
58 IPCONGD Industrial Production: Consumer Goods 5
59 IPDCONGD Industrial Production: Durable Consumer Goods 5
60 IPDMAT Industrial Production: Durable Materials 5
61 IPFINAL Industrial Production: Final Products (Market Group) 5
62 IPMAT Industrial Production: Materials 5
63 IPNCONGD Industrial Production: Nondurable Consumer Goods 5

Table C.3: Data description and transformation codes. 1 = no transformation, 2 = first difference, 4 =
log, 5 = 100×(first difference of log), 6 = 100×(second difference of log). *- The dependent variables.
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No. Mnemonic Description Tcode
64 IPNMAT Industrial Production: nondurable Materials 5
65 LOANS Loans and Leases in Bank Credit, All Commercial Banks 6
66 M1SL M1 Money Stock 6
67 M1V Velocity of M1 Money Stock 5
68 M2SL M2 Money Stock 6
69 M2V Velocity of M2 Money Stock 5
70 MCUMFN Capacity Utilization: Manufacturing (NAICS) 1
71 MPRIME Bank Prime Loan Rate 2
72 MZMSL MZM Money Stock 6
73 NAPM ISM Manufacturing: PMI Composite Index 1
74 NAPMEI ISM Manufacturing: Employment Index 1
75 NAPMII ISM Manufacturing: Inventories Index 1
76 NAPMNOI ISM Manufacturing: New Orders Index 1
77 NAPMPI ISM Manufacturing: Production Index 1
78 NAPMPRI ISM Manufacturing: Prices Index 1
79 NAPMSDI ISM Manufacturing: Supplier Deliveries Index 1
80 NDMANEMP All Employees: Nondurable goods 5
81 NONREVSL Total Nonrevolving Credit Owned and Securitized, Outstanding 6
82 OPHPBS Business Sector: Real Output Per Hour of All Persons 5
83 PAYEMS All Employees: Total nonfarm 5
84 PCDG Personal Consumption Expenditures: Durable Goods 5
85 PCECTPI Personal Consumption Expenditures: Chain-type Price Index 5
86 PCESV Personal Consumption Expenditures: Services 5
87 PCND Personal Consumption Expenditures: Nondurable Goods 5
88 PFCGEF Producer Price Index: Finished Consumer Goods Excluding Foods 6
89 PINCOME Personal Income 6
90 PNFI Private Nonresidential Fixed Investment 6
91 PPIACO Producer Price Index: All Commodities 6
92 PPICPE Producer Price Index: Finished Goods: Capital Equipment 6
93 PPICRM Producer Price Index: Crude Materials for Further Processing 6
94 PPIFCF Producer Price Index: Finished Consumer Foods 6
95 PPIFCG Producer Price Index: Finished Consumer Goods 6
96 PPIFGS Producer Price Index: Finished Goods 6
97 PPIITM Producer Price Index: Intermediate Materials: Supplies & Components 6
98 PRFI Private Residential Fixed Investment 6
99 PSAVE Personal Saving 5
100 REALLN Real Estate Loans, All Commercial Banks 6
101 SAVINGSL Savings Deposits - Total 6
102 SLEXPND State & Local Government Current Expenditures 6
103 SLINV State & Local Government Gross Investment 6
104 SP500 S&P 500 5
105 SRVPRD All Employees: Service-Providing Industries 5
106 TB3MS 3-Month Treasury Bill: Secondary Market Rate 2
107 TB6MS 6-Month Treasury Bill: Secondary Market Rate 2
108 TCDSL Total Checkable Deposits 6
109 TOTALSL Total Consumer Credit Owned and Securitized, Outstanding 6
110 TVCKSSL Travelers Checks Outstanding 6
111 UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks 5
112 UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over 5
113 UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks 5
114 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks 5
115 ULCNFB Nonfarm Business Sector: Unit Labor Cost 5
116 UNRATE Civilian Unemployment Rate 2
117 USCONS All Employees: Construction 5
118 USEHS All Employees: Education & Health Services 5
119 USFIRE All Employees: Financial Activities 5
120 USGOOD All Employees: Goods-Producing Industries 5
121 USGOVT All Employees: Government 5
122 USINFO All Employees: Information Services 5
123 USLAH All Employees: Leisure & Hospitality 5
124 USMINE All Employees: Mining and logging 5
125 USPBS All Employees: Professional & Business Services 5
126 USPRIV All Employees: Total Private Industries 5
127 USTPU All Employees: Trade, Transportation & Utilities 5
128 USTRADE All Employees: Retail Trade 5
129 USWTRADE All Employees: Wholesale Trade 5
130 WASCUR Compensation of Employees: Wages & Salary Accruals 6
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Algorithm 1 Graphical VAR Model Selection Algorithm
for p ∈ [p, . . . , p̄] do

Initialize ~Gp as (ny × np) zero matrix, set mp = min {np, T − p}
Vi
p,x the vector of all possible explanatory variables up to lag p

Vy the vector of dependent variables
for each yi ∈ Vy do

for each xk ∈ Vi
p,x do

if xk is equal to lag 1 of yi then
Set ~Gp(yi, xk) = 1

else
Compute H0 = P (X|pi, ~Gp(yi, ∅)) and H1 = P (X|pi, ~Gp(yi, {xk}))
if H1 > H0 then

Set ~Gp(yi, xk) = 1 and retain xk in Vi
p,x

else
Set ~Gp(yi, xk) = 0 and remove xk from Vi

p,x

Set Np(πi) the set of variables, x′ks, retained in Vi
p,x

for j = 1→ J , the total iterations do
for each yi ∈ Vy do

Set π(j−1)
i = the set explanatory variables of yi in ~G

(j−1)
p,i

Draw η̄
(∗)
i from a Be(a, b) and set f (∗)

i = bmpη̄
(∗)
i c

if |π(j−1)
i | < f

(∗)
i then

Set Q(~G(∗)
p,i |~G

(j−1)
p,i , η̄

(∗)
i ) = 1/|Np(πi)|,

Draw xk ∈ Np(πi)
Add/remove edge; i.e. ~G(∗)

p (yi, xk) = 1− ~G
(j−1)
p (yi, xk)

else
Set Q(~G(∗)

p,i |~G
(j−1)
p,i , η̄

(∗)
i ) = 1/|π(j−1)

i |
Draw xk ∈ π(j−1)

i

Remove edge; i.e. ~G(∗)
p (yi, xk) = 0

Set π(∗)
i = the set explanatory variables of yi in ~G

(∗)
p,i

Draw η̄
(∗∗)
i from a Be(a, b) and set f (∗∗)

i = bmpη̄
(∗∗)
i c

if |π(∗)
i | < f

(∗∗)
i then

Set Q(~G(j−1)
p,i |~G(∗)

p,i , η̄
(∗∗)
i ) = 1/|Np(πi)|

else
Set Q(~G(j−1)

p,i |~G(∗)
p,i , η̄

(∗∗)
i ) = 1/|π(∗)

i |
Sample u ∼ U[0,1]
Compute RA following equation (18)
if u < min{1, RA} then

~G
(j)
p,i = ~G

(∗)
p,i

else
~G

(j)
p,i = ~G

(j−1)
p,i
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