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Abstract

We provide clear-cut evidence for economically and statistically significant mul-

tivariate jumps (multi-jumps) occurring simultaneously in stock prices by using a

novel nonparametric test based on smoothed estimators of integrated variances.

Detecting multi-jumps in a panel of liquid stocks is more statistically powerful and

economically informative than the detection of univariate jumps in the market in-

dex. On the contrary of index jumps, multi-jumps can indeed be associated with

sudden and large increases of the variance risk-premium, and possess a statistically

significant forecasting power for future volatility and correlations which implies a

sizable deterioration in the diversification potential of asset allocation.
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1 Introduction

Figure 1 shows the intraday log-returns of four financial stocks (see Table 6) on Decem-

ber, 11th 2007. In that day, a FOMC meeting was taking place, ending with the decision

of lowering the target for federal funds rate of 25 basis points, due to ”slowing economic

growth reflecting the intensification of the housing correction” and ”financial strains”1.

The four financial companies collapsed all together in the afternoon, with a contempora-

neous log-return of approximately −3% which is clearly visible in the figure. The figure

also shows an evident increase, after the collapse, of both the stocks’ volatility and their

correlation. Moreover, the VIX index rose that day to 23.59 from 20.74 (+13.7%).

In the continuous time literature, a price movement of 3% (when the local volatility is

less than 0.5%, thus of more than six standard deviations in volatility units) is typically

modeled as a jump, that is a discontinuous variation of the price process. There are three

possible routes to the detection of collective events like that in Figure 1 in the data: i)

detection of a jump in a portfolio which includes the stocks (e.g., the equity index); ii)

detection of jumps in individual stocks; iii) direct detection of the multivariate jump (or

multi-jump as we call it in this paper). Surprisingly, a lot of effort has been devoted to

i) and ii), both theoretically and empirically, but almost none to iii). In this paper, we

introduce a formal test for the detection of multi-jumps, we argue that the third option is

actually the most effective and we show that it reveals additional economic information

which could not be revealed by the first two.

Multi-jumps are crucial events for asset allocation and risk management, as recognized

by the financial literature. For example, Longin and Solnik (2001) show that correlations

increase after a collective crash in the market, dampening the diversification potential of

portfolio managers, and Das and Uppal (2004) use multivariate jumps to model systemic

risk and its impact on portfolio choice. Bollerslev et al. (2008) use multi-jumps (common

1FOMC press release, December, 11th 2007, available at
http://www.federalreserve.gov/newsevents/press/monetary/20071211a.htm
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Figure 1: Intraday price changes (log-returns over 5 minutes) of Bank of
America (BAC), Citigroup (C), JP Morgan (JPM) and Wells Fargo (WFC) on
11 December 2007. The four banking stocks collapse altogether around 14.15,
while a FOMC meeting was taking place. We label this event a multi-jump.
After the collapse, both volatility and correlation among stocks increases.

jumps, in their terminology) to explain jumps in the aggregated market index and discuss

that, for asset allocation, it is more important to be able to detect jumps occurring

simultaneously among a large number of assets, since the effect of co-jumps in a pair of

assets is negligible in a huge portfolio; Gilder et al. (2014) also study the relation between

common jumps and jumps in the market portfolio, and relate common jumps and news.

If rare, dramatic multi-jumps can be interpreted as systemic events carrying market-

wide information on economic fundamentals, their occurrence is also likely to affect the

aggregate attitude to risk and thus have an impact on risk premia. For example, Bollerslev

and Todorov (2011) empirically supported the view that risk compensation due to large

jumps is quite large and time-varying, while Drechsler and Yaron (2011) and Drechsler

(2013) highlight the importance of transient non-Gaussian shocks to fundamentals in

explaining the magnitude of risk premia. In this paper, we complement this evidence

by showing that multi-jumps can be associated with large increases in the variance risk

premium.

Despite the statistical, economic and financial importance of multi-jumps, the financial

econometrics literature is still missing a formal test to be used as an effective tool for
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their detection. A vast literature2 concentrated on univariate jump tests. Progress on

developing tests for common jumps in a pair of asset prices was started by Barndorff-

Nielsen and Shephard (2003). They propose a way to separate out the continuous and

co-jump parts of quadratic covariation of a pair of asset prices. Mancini and Gobbi (2012)

developed an alternative threshold-based estimator of continuous covariation. Jacod and

Todorov (2009) proposed two tests for co-jumps, their approach relying on functionals

which depend, asymptotically, on co-jumps only. Finally, Bibinger and Winkelmann

(2013) develop a co-jumps test using spectral methods. However, these methodologies

apply to the case N = 2 only and their generalization to the case N > 2 is non-trivial.

Bollerslev et al. (2008) propose a test for common jumps in a large panel (N → ∞)

which is based on the pairwise cross-product of intraday returns. In empirical work,

detection of multivariate jumps is typically achieved with a simple co-exceedance rule

(see, e.g., Gilder et al., 2014), according to which the multi-jump test is the intersection

of univariate tests.

We fill this gap in the literature by introducing a novel testing procedure for multi-

jumps which naturally applies to the case N ≥ 2, with N finite. The proposed approach

builds on the comparison of two types of suitably introduced smoothed power variations.

High values of the test-statistics (which is asymptotically χ2(N) under the null) signal

the presence of a multi-jump among at least M stocks, with M ≤ N . The smoothing

procedure depends on a bandwidth which can be used to approximately select the desired

M , with higher bandwidth values corresponding to higher M . We propose an automated

bandwidth selection procedure which can be tuned to get the desired M .

Using simulations of realistic price processes which accommodate for the most relevant

empirical features and which are implemented at the 5−minutes frequency (thus making

the testing procedure virtually immune from distortions due to the presence of microstruc-

ture noise), we show that the proposed procedure i) has desirable size properties; ii) is

2Barndorff-Nielsen and Shephard (2006); Lee and Mykland (2008); Jiang and Oomen (2008); Aı̈t-
Sahalia and Jacod (2009) and Christensen et al. (2014), among others.
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more powerful and better sized than the Jacod and Todorov (2009) test, which needs a

much higher frequency (that is, many more data) to become effective; iii) is remarkably

powerful in detecting multi-jumps and iv) strongly outperforms the co-exceedance rule

in terms of power.

Results on real data are also encouraging. When applied to 16 liquid US stocks in the pe-

riod 2003-2012, the test reveals the significant presence of multi-jumps. Not surprisingly,

the multi-jumps occurrence rate becomes smaller with larger bandwidth, that is when we

increase the minimal order M of stocks jumping jointly. However, multi-jumps with large

M (high bandwidth) are rare but important events, which can be always associated with

relevant market-wide economic news. This allows to interpret them as systemic events

affecting the market on a whole.

Importantly, detection of multi-jumps in the stocks reveals additional information with

respect to that conveyed by univariate jumps in the index. Indeed, while theoretically

a multi-jump in the constituents should always correspond to a jump in the index, em-

pirically this is not necessarily true since the multi-jumps could have different directions

(even if empirical evidence reported in Section 5 documents that this is a quite unlikely

event: multi-jumps have typically the same direction) or they could occur in a small sub-

set of stocks, such that the jump in the index could be rather small and hard to detect.

These considerations are confirmed by the data: roughly a half of detected multi-jumps

in our sample cannot be associated with jumps in the index, unveiling information that

univariate jumps could not reveal.

The additional information conveyed by multi-jumps is economically significant. We

show that multi-jumps are strongly correlated with large increases in the variance risk

premium, while univariate jumps on the index are not. This result is in line with recent

theoretical literature, mentioned above, underscoring the impact of jumps in fundamen-

tals on changes in aggregate risk aversion, and the empirical result in Todorov (2010),

who makes use of a parametric model to show that price jumps are linked to the vari-
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ation in the variance risk-premium. When multi-jumps are used, the association with

changes in the variance risk-premium becomes clear-cut also in our fully non-parametric

setting. This further indicates that multi-jumps are particularly suitable to test for sys-

temic events, while questioning the usage of index jumps via univariate statistics to this

purpose.

To further verify the potential empirical impact of multi-jumps, we show that they have

substantial predictive power for volatility and correlations. Both stock correlations and

volatilities are found to significantly increase after the occurrence of a multi-jump, thus

confirming, on a formal statistical ground, the anedoctical evidence in Figure 1. In

particular, the impact of multi-jumps on the correlation coefficient between a given pair

of stocks is quite strong, especially when compared to the impact of idiosyncratic co-jumps

between the same pair. These results have compelling implications for asset allocation.

A risk-averse investor who allocates her wealth in a portfolio of stocks and a risk-free

asset is harmed by the presence of multi-jumps in two ways. The first, which could be

dealt with the model developed by Das and Uppal (2004), is the change in the optimal

allocation strategy due to the presence of multi-jumps with respect to the case without

multi-jumps. The second, which we quantify here, is the impact of multi-jump on the

covariance matrix of the stocks, which implies an additional utility loss due to the increase

in the portfolio variance and the worsening of the diversification potential. The latter

effects would induce a less risky, that is less invested in stocks, optimal allocation strategy

than that recommended by traditional models.

The remainder of the paper is organized as follows. Section 2 describes the continuous-

time jump-diffusion model adopted in the paper. Section 3 explains the formal testing

procedure and provides asymptotic results. Section 4 presents results on simulated price

dynamics. Section 5 applies the test to real data and contains the empirical results and

their implications for asset allocation. Section 6 concludes.
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2 Model

Denote the log-prices of an N -dimensional vector of assets by X = (X(i))i=1,...,N . We as-

sume that stock prices evolve continuously on a filtered probability space (Ω,F , (F)t∈[0,T ],P)

satisfying the usual conditions, and we assume the following dynamics for X, accommo-

dating for continuous (through Brownian motion) and discontinuous (through jumps)

shocks.

Assumption 1. X is an N-dimensional Ito semimartingale following:

dXt = atdt+ ΣtdWt + dJt

where at (in RN) and Σt (in RN×M) are càdlàg adapted processes, Wt is standard mul-

tivariate Brownian motion in RM and Jt is a finite activity jump process of the form

J
(i)
t =

∑N
(i)
t

k=1 γ
(i)

τ
(i)
k

, i = 1, . . . , N , and N
(i)
t is a non-explosive counting process. Moreover,

we assume that the jump sizes are such that, ∀k = 1, . . ., we have P
(
γ

(i)

τ
(i)
k

= 0

)
= 0,

i = 1, . . . , N .

The model, which is very general and encompasses virtually all parametric models typi-

cally used in financial applications, allows each component of X to include idiosyncratic

jumps (that occur only for a single stock) as well as common jumps among stocks. Define

the process

∆Xt = Xt −Xt− , (1)

and, as an example, consider the case N = 3. The common jumps between X(1) and X(2)

satisfy

∆X
(1)
t ∆X

(2)
t = γ

1(2)
t γ

2(1)
t ∆N12

t + γ
1(23)
t γ

2(13)
t ∆N123

t ,

where N12 and N123 are independent counting processes, while common jumps among all
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the three processes3 satisfy

∆X
(1)
t ∆X

(2)
t ∆X

(3)
t = γ

1(23)
t γ

2(13)
t γ

3(21)
t ∆N123

t .

The inference procedure is designed to test the null

∑
0≤t≤T

∆X
(1)
t ∆X

(2)
t ∆X

(3)
t = 0

against the alternative ∑
0≤t≤T

∆X
(1)
t ∆X

(2)
t ∆X

(3)
t 6= 0.

Note that the presence of a multi-jump among three assets implies the presence of co-

jumps between each pair of them. However, the presence of co-jumps between each pair

of assets does not necessarily imply the presence of a multi-jump among them.

We do not explicitly include in the model market microstructure contaminations, since

the proposed method is thought to be applied at moderately low frequencies (e.g., five

minutes) where the impact of microstructure noise should be negligible. The theory

could however be easily extended to include market microstructure noise by adapting our

return smoothing technique to preaveraged estimators robust to both jumps and market

microstructure noise, as in Podolskij and Vetter (2009) and Hautsch and Podolskij (2013).

The theory could also be extended for infinite activity jumps (see, e.g., Aı̈t-Sahalia and

Jacod, 2012 and the references therein), since the test procedure developed below is based

on smoothed estimators of integrated variances which have been shown to be consistent

even in the presence of this kind of shock, see Mancini (2009) and Mancini and Gobbi

(2012).

3To underscore the methodological contribution of this paper, we use the word co-jump when the
common jump is between two assets, and multi-jumps when the common jump is among three or more
assets.
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3 Multi-jumps inference

Assume to record X in the interval [0, T ], with T fixed, in the form of n+1 equally spaced

observations4 and denote by ∆ = T/n. Define the evenly sampled logarithmic returns as

∆jX = Xj∆ −X(j−1)∆, j = 1, . . . , n. (2)

In order to formulate the statistical properties of the test, define the following sets:

ΩMJ,N
T = {ω ∈ Ω | the process

N∏
j=1

(
∆X(j)

)
t

is not identically 0}

Ω
N

T = Ω \ ΩMJ,N
T .

The set ΩMJ,N
T contains trajectories with common multi-jumps among all N assets in

[0, T ]. The complementary set Ω
N

T contains trajectories without multi-jumps in N stocks;

it could however contain jumps and multi-jumps up to N − 1 stocks. Testing for multi-

jumps is equivalent to testing the following:

H0 :
(

(Xt(ω))t∈[0,T ] ∈ Ω
N

T

)
vs. H1 :

(
(Xt(ω))t∈[0,T ] ∈ ΩMJ,N

T

)
. (3)

Inference is based on the definition of two newly defined integrated variance estimators

which constitute a generalization, particularly suitable to our application, of the truncated

realized variance estimator of Mancini (2009). To this purpose we need a definition of a

kernel and a bandwidth.

Assumption 2. A kernel is a function K(·) : R → R, which is differentiable with

bounded first derivative almost everywhere in R, and such that K(0) = 1, 0 ≤ K(·) ≤ 1

and limx→∞K(|x|) = 0. The bandwidth process is a sequence Ht,n of processes in RN

4This requirement can be easily generalized to non-equally spaced observations, if we set ∆̄ =
maxi=1,...,n(ti − ti−1), where ti are observation times, and require ∆̄ → 0, see Remark i) of Theorem 4
in Mancini (2009).
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which can be written as Ht,n = hnξt,n, where hn is a sequence such that

lim
n→∞

hn = 0, lim
n→∞

1

hn

√
log n

n
= 0, (4)

and ξt,n is a vector of N positive adapted stochastic process on [0, T ] which are all a.s.

bounded with a strictly positive lower bound.

The bandwidth is written in the form hnξt,n to allow for data-dependent and time-varying

bandwidth. Indeed, in our application ξt,n is the local variance estimated by the obser-

vations themselves, see Eq. (31). We call hn the bandwidth parameter, and provide an

automated criterion for its selection in Section B.1 in the Appendix.

We now define two novel jump-robust integrated variance estimators, which are both

called Smoothed Realized Variance. The first one takes the form

SRV(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣2 ·K (∆jX

(i)

H
(i)
j∆,n

)
, (5)

where X(i), H(i) are the i-th components of the vectors X,H and K(·) and Ht,n are

the kernel and bandwidth defined in Assumption 2. This estimator coincides with the

estimator in Mancini (2009) when K(x) = I{|x|≤Ht,n}, but allows for a different choice

of the kernel. The intuition is however similar to that of Mancini (2009): ”smoothed”

squared returns
∣∣∆jX

(i)
∣∣2 · K (∆jX

(i)/H
(i)
j∆,n

)
are close to squared returns

∣∣∆jX
(i)
∣∣2

when they are small; smoothed squared returns are instead small when returns are large,

where the extent of ”largeness” is gauged by the bandwidth Hj∆,n. Asymptotically, this

procedure annihilates the jumps. The estimator of Mancini (2009) is the most draconian

in this respect, since using the indicator function implies that smoothed returns are zero

when returns are larger than Hj∆,n (dubbed threshold in Mancini’s terminology). The

advantage of replacing the indicator function with a smooth kernel is that it provides an

estimator which depends smoothly on the bandwidth: This stabilizes the procedure in

small samples (by making it less prone to type I and II errors due to erroneous bandwidth
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selection) and also eases bandwidth selection.

The following theorem (proof in Appendix A) shows that SRV(X(i)) in Eq. (5) is a

jump-robust consistent estimator of integrated variance.

Theorem 3.1. Let the process X satisfy Assumption 1, and the kernel and bandwidth

satisfy Assumption 2. Then, as n→∞ we have

SRV(X(i))
p−→
∫ T

0

(σ(i))2
udu, (6)

where σ(i) is the volatility of X
(i)
t .

The following remark introduce a correction to improve the estimator performance in

small samples.

Remark 1. (Small Sample Correction) In order to improve the finite samples un-

biasedness of the estimator defined in Eq. (5), it is advisable to normalize it as follows:

n∑
j=1

∣∣∆jX
(i)
∣∣2 ·K (∆jX

(i)

H
(i)
j∆,n

)

∆
n∑
j=1

K

(
∆jX

(i)

H
(i)
j∆,n

) p−→
∫ T

0

(σ(i))2
udu,

since ∆
∑n

j=1 K

(
∆jX

(i)

H
(i)
j∆,n

)
p−→ 1.

The second estimator takes the form:

S̃RV
N

(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣2 ·(K (∆jX

(i)

H
(i)
j∆,n

)
+

N∏
k=1

(
1−K

(
∆jX

(k)

H
(k)
j∆,n

)))
. (7)

Returns in Eq. (7) are smoothed as in Eq. (5), but they are also kept similar to the

original returns if all multivariate returns are big. Thus, even if, when n → ∞, both

smoothing procedures are meant to annihilate jumps, the smoothing in Eq. (7) will

let multi-jump survive. This intuition is formalized in the following theorem (proof in
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Appendix A), which represents the base for inference and testing.

Theorem 3.2. Let the process X satisfy Assumption 1, and the kernel and bandwidth

satisfy Assumption 2. Then, as n→∞,

S̃RV
N

(X(i))
p−→


∫ T

0
(σ(i))2

udu+
∑

∆X
(1)
t ...∆X

(N)
t 6=0

(
∆X

(i)
t

)2

on ΩMJ,N
T

∫ T
0

(σ(i))2
udu, on Ω

N

T

; (8)

where σ(i) is the volatility of X
(i)
t .

Theorems 3.1 and 3.2 introduce a natural estimator for the multi-jumps on each series.

By the light of Remark 1 the jump size of stock i corresponding to a multi-jump among

all stocks is naturally derived in the following remark.

Remark 2. (Multi-jump Size Estimation)

S̃RV
N

(X(i))− SRV(X(i))

∆
n∑
j=1

K

(
∆jX

(i)

H
(i)
j∆,n

) p−→


∑

∆X
(1)
t ...∆X

(N)
t 6=0

(
∆X

(i)
t

)2

on ΩMJ,N
T

0, on Ω
N

T

. (9)

In order to define the test statistics, we follow Podolskij and Ziggel (2010) and de-

fine a iid N × n matrix of draws (ηij)1≤i≤N,1≤j≤n, defined on the canonical extension

(Ω′,F ′, (F ′)t∈[0,T ],P ′) of the original probability space (Ω,F , (F)t∈[0,T ],P) and indepen-

dent from F . We assume that E
[
ηij
]

= 1 and Var
[
ηij
]

= Vη <∞. Define:

S̃V(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣2 ·K (∆jX

(i)

Hj∆,n

)
· ηij, i = 1, . . . , N, (10)

and

SQ(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣4 ·K2

(
∆jX

(i)

Hj∆,n

)
, i = 1, . . . , N. (11)
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The test statistics is then defined as

Sn,N :=
1

Vη

N∑
i=1

(
S̃V(X(i))− S̃RV

N
(X(i))

)2

SQ(X(i))
(12)

and its asymptotics is described in the following Theorem (proof in Appendix A).

Theorem 3.3. Under Assumption 1 and 2, if (ηij)1≤i≤N,1≤j≤n are pairwise independent,

as n→∞, it holds: 
Sn,N

d−→ χ2(N), on Ω
N

T

Sn,N
p−→ +∞ on ΩMJ,N

T

; (13)

where χ2(N) denotes the χ-square distribution with N degrees of freedom.

Theorem 3.3 implies that the statistic Sn,N can be used for testing for the presence of

multi-jumps. Under H0, the value of Sn,N will be distributed as a χ2 with N degrees of

freedom. Under H1, that is in the presence of multi-jumps, it will diverge as the number

of observations n increases.

Notice that the test defined in Eq. (12) is of computational order N , in the sense that the

computational burden increases linearly with N . In particular, the test does not require

the estimation of the covariance between stocks (which would increase the computational

burden as N2).

Following the suggestions of Podolskij and Ziggel (2010) for the univariate jump test, the

random variables ηij are allowed to take the values {1 + τ, 1− τ} with equal probability,

so that Vη = τ 2. In both Monte Carlo and empirical exercises we use τ = 0.05.

4 Simulation study

In order to simulate the dynamics of realistic prices, we simulate a multivariate model

that accommodates correlated prices, stochastic volatility, leverage effect, intraday effects,
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idiosyncratic jumps and multi-jumps. All these components have been shown to be

present in the dynamics of high-frequency financial prices, and we use realistic parameter

values. We do not include market microstructure noise (see the discussion above). The

dynamics of the continuous parts of each component are given by the same stochastic

differential equations driven by correlated Brownian motions:

dX
(i)
t = µ dt+ γtσ

(i)
t dW

(i)
t + dJ

(i)
t

d log(σ
(i)
t )2 = (α− β log(σ

(i)
t )2) dt+ ηdW̃

(i)
t ,

(14)

where i = 1, . . . , 16, W (i) and W̃ (i) are standard Brownian motions with corr
(
dW (i), dW̃ (i)

)
=

ρ̃; σ
(i)
t are stochastic volatility factors and γt represent intraday effects. The Brownian

motions W (i) driving the price dynamics can be correlated, as specified below. The pure

jump parts of X(i) are different compound Poisson processes.

The parameters of the model are taken to be as estimated by Andersen et al. (2002) on

S&P500 prices: µ = 0.0304, α = −0.012, β = 0.0145, η = 0.1153, ρ̃ = −0.6127; where

the parameters are expressed in daily units and returns are in percentage. The intraday

effects are given by:

γt =
1

0.1033
(0.1271 · t2 − 0.1260 · t+ 0.1239),

as estimated on S&P500 intraday returns. In our simulations, we always have t ∈ [0, 1],

with initial values for prices and volatility taken from the last simulated day.

The model (14) is discretized with the Euler scheme, using discretization step of ∆ = 1
80

which roughly corresponds to 5-minutes returns for a trading day of 6.5 hours (n = 80).

We generate samples of 1,000 days with different specifications for the jump processes

dJ
(i)
t .
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4.1 Two assets

We start with the case N = 2. The two assets are correlated, with

corr
(
dW (1), dW (2)

)
= ρ

with ρ = 0.5.

We generate different samples, subdivided into five categories. Jumps, when present,

come in the form of big jumps, with a size of 8
√

1/80, or small jumps, with a size of

4
√

1/80 (the average volatility in simulations being around 1). In the first category

(continuous processes), there are no generated jumps. In the second category (one big

jump) there are no co-jumps, but we generate a single big jump in the first component

X(1), located randomly within the day. In the third category (big idiosyncratic jumps),

both X(1) and X(2) have big jumps, but they are idiosyncratic in the sense that they never

occur in the same time interval. The first three categories thus fall under the null. In the

fourth and firth categories (big co-jumps and small co-jumps), which are the alternatives,

X(1) and X(2) contain one big-big and small-small co-jump respectively.

In this set of simulations, the Sn,N statistics are implemented using different bandwidth

parameters hn (see Section B.1 in the Appendix), namely hn = 5 and hn = 6.5 (see

Figure 9). For comparison, we also implement two co-jump tests proposed by Jacod and

Todorov (2009): Φj
n, which is used to test the null hypothesis of the presence of co-jumps,

and Φd
n, which is used to test the null of absence of co-jumps. The tests are described in

Section B.2 in the Appendix.

Table 1 analyzes the size properties for the three considered tests. Notice that the size of

Sn,N and Φn
d should be computed when co-jumps are absent, while the size of Φj

n should

be evaluated when co-jumps are present. To underscore the dependence of the Sn,N on

the bandwidth, we denote it by Sn,N(hn). In the absence of jumps, both S80,2(5) and

S80,2(6.5) have practically undistorted size at all relevant critical levels. However, when

15



jumps are added, size distortions appear, more strongly with lower hn, and the distortions

are larger in the presence of two idiosyncratic jumps. In the case with hn = 6.5, however,

size distortions are reasonable: The simulated distribution of S80,2(6.5), in the most

challenging case with big idiosyncratic jumps, is compared to its asymptotic limit in

Figure 2, top panel. On the other hand, the size of both Φj
n and Φd

n is quite distorted.

This is not surprising, since also in Jacod and Todorov (2009) these tests have been shown

to need a much larger value of n to work properly.

Table 2 analyzes the power of the three tests. All the tests perform equally well when

co-jumps are big. When co-jumps are small they are obviously more difficult to detect.

The power of the S80,2(6.5) increases with smaller hn, paralleling the corresponding larger

size distortions.

These results suggest that bandwidth selection can be used to trade-off size and power.

Higher bandwidth correspond to more reliable size but less power. In the case we are

testing for multi-jumps with larger N , this can be particularly useful, as we discuss below.

4.2 Four assets

We next proceed to simulate a system with N = 4. Continuous dynamics of all the com-

ponents is simulated as in equation (14), without jumps. The Brownian motions, driving

the first pair of components, are positively correlated: corr(W (1),W (2)) = 0.5. The sec-

ond pair of components are negatively correlated: corr(W (3),W (4)) = −0.5. Correlations

between the other pairs is null: corr(W (1),W (3)) = corr(W (1),W (4)) = 0.

In this set of simulations, we consider five cases:

1. Case 1: all components of X are continuous.

2. Case 2: all components of X contain a single big jump, but the four jumps occur

in different time intervals.
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Table 1: Compares the size of competing tests in the case N = 2. Differ-
ent processes for the null are considered. The sampling frequency is n = 80,
corresponding to 5-minute intraday observations.

confidence interval → 90% 95% 99% 99.9%

continuous processes

S80,2(6.5) 10.2 4.6 0.9 0.0
S80,2(5) 14.1 8.1 1.9 0.2

one big jump

S80,2(6.5) 17.0 9.8 3.7 1.7
S80,2(5) 31.8 22.8 13.8 9.0

big idiosyncratic jumps

S80,2(6.5) 15.7 9.2 5.3 2.1
S80,2(5) 44.8 37.3 28.2 19.9

Φd 64.3 49.1 32.7 19.3

big co-jump

Φj 14.7 12.5 10.8 10.2

small co-jump

Φj 42.2 41.2 41.0 41.0

3. Case 3: there is a single multi-jump in the first triplet of the components of X and

jumps are big.

4. Case 4: there is a multi-jump among the four processes and all jumps are small.

5. Case 5: there is a multi-jump among the four processes and all jumps are big.

Thus, Cases 1,2,3 represent the null and Cases 4,5 represent the alternative. The Sn,N-

tests are implemented with bandwidth parameters hn = 2.5, 3.5, 5.5 (see Figure 9).
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Table 2: Compares the power of competing tests in the case N = 2. Different
processes for the alternative are considerers. The sampling frequency is n = 80,
corresponding to 5-minute intraday observations.

confidence interval → 90% 95% 99% 99.9%

big idiosyncratic jumps

Φj 100.0 100.0 100.0 100.0

big co-jump

S80,2(6.5) 95.5 94.7 94.1 92.7
S80,2(5) 96.8 95.8 95.5 95.4

Φd 99.5 98.9 98.7 98.4

small co-jump

S80,2(6.5) 32.2 25.7 13.8 7.3
S80,2(5) 57.5 51.7 42.0 33.7

Φd 98.4 96.7 93.7 89.0

Table 3 shows the results for all Cases. With continuous processes and idiosyncratic

jumps, the size distortions (increasing with smaller hn, as before) are negligible. They

are instead quite strong against a multi-jump among M = 3 stocks with hn = 2.5, 3.5.

The automated bandwidth selection indicates a value of hn = 5.5 in this case, and this

indeed provides a reasonable size (the distribution of the test in this case is compared to

the asymptotic limit in the middle panel of Figure 2). Power is practically unaffected by

the bandwidth if the multi-jump is composed of big jumps; while it decreases with higher

bandwidth if multi-jumps are small.

Again, the bandwidth parameter can thus be used to trade-off size and power. Reason-

able size can always be achieved, but at the obvious cost of less power. This opens an

interesting possibility for the econometrician. The null (no multi-jumps across N assets)

and the alternative described in Section 3 refer to asymptotic situations. In practice, we
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Figure 2: Shows the simulated distribution of the proposed multi-jump tests
together with its asymptotic distribution under the null (which isχ2(N)); the
tests are S80,2(6.5) for N = 2 in the case with big idiosyncratic jumps (top
panel), S80,4(5.5) for N = 4 in Case 3 (center panel) and S80,16(4.5) for N = 16
in Case 3 (bottom panel).

could consider several alternatives when computing the test on N assets: multi-jump in

N assets, in N − 1 assets, in N − 2 assets and so on. The bandwidth parameter can

be used to disentangle these cases. For example, looking at Table 3, we see that with

hn = 5.5 we would disentangle a multi-jump in 4 stocks by a multi-jump in 3 stocks; with

hn = 3.5 we would also detect multi-jumps in three stocks, and with hn = 2.5 we would

also detect multi-jumps in two stocks. In empirical work, the choice of hn could depend

on the specific research objectives.
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Table 3: Shows the size and power of the proposed test in the case N = 4.
Different processes under the null and the alternative are considered. The
sampling frequency n = 80 corresponds to 5-minute intraday observations.

confidence interval → 90% 95% 99% 99.9%

Case 1: continuous processes

S80,4(2.5) 12.3 6.2 1.6 0.1
S80,4(3.5) 9.9 4.1 0.6 0.1
S80,4(5.5) 11.1 5.1 0.7 0.0

Case 2: big idiosyncratic jumps

S80,4(2.5) 14.0 7.7 3.1 1.4
S80,4(3.5) 8.6 4.3 0.4 0.0
S80,4(5.5) 5.7 1.8 0.1 0.0

Case 3: multi-jump in N = 3 stocks

S80,4(2.5) 71.8 68.6 63.6 61.3
S80,4(3.5) 55.8 50.9 45.1 41.1
S80,4(5.5) 14.0 9.3 3.6 2.1

Case 4: small multi-jump

S80,4(2.5) 94.2 92.9 90.4 87.2
S80,4(3.5) 53.2 46.9 37.5 30.4
S80,4(5.5) 10.2 4.8 0.9 0.2

Case 5: big multi-jump

S80,4(2.5) 98.7 98.7 98.6 98.6
S80,4(3.5) 98.8 98.7 98.6 98.6
S80,4(5.5) 98.2 98.0 97.5 96.7

4.3 Many assets

We finally simulate a large number of stocks, that isN = 16 as in the empirical application

below. Continuous parts of all components follow equation (14). The Brownian motions

driving the system are correlated with the average daily correlation matrix estimated on
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the stock returns used in the empirical application in Section 5. We now consider the

following settings:

1. Case 1: all components of X are continuous.

2. Case 2: there is a multi-jump in M = 4 components of X with big jumps.

3. Case 3: there is a multi-jump in M = 15 components of X with big jumps.

4. Case 4: there is a multi-jump in M = N = 16 components of X and all jumps are

small.

5. Case 5: there is a multi-jump in M = N = 16 components of X and all jumps are

big.

In this setting, Cases 1,2,3 represent the null and Cases 4,5 two possible alternatives.

Here we implement Sn,N-test with hn = 1, 2, 4.5 (see Figure 9). The bandwidth hn = 4.5

is selected by our automated bandwidth selection method under a null with M = 15

multi-jumps.

Table 4 shows the results. For all the considered bandwidth, size is reasonable in the

case of continuous processes and moderate multi-jump (M = 4), but becomes distorted

in the case M = 15 unless we use the automatically selected value hn = 4.5. This result

is in line with the simulation evidence presented above; size is more reliable with higher

bandwidth, while power is instead higher with lower bandwidth. The econometrician

should then choose hn = 4.5 if he is interested in multi-jumps among 16 jumps only. This

will somewhat sacrifice power. If instead one is interested in multi-jumps across fewer

stocks, a smaller hn can be used; for example, with hn = 2 we are still robust against

moderate multi-jumps across M = 4 stocks, but we would detect most of the multi-

jumps with M = 15 too (and, with decreasing power, with M = 14, 13, . . .) also when

their magnitude is modest. This feature of the test is actually very appealing, especially

with a very large N , and indeed in our empirical application we take advantage of it by

using hn = 2.
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Table 4: Shows the size and power of the proposed test in the case N = 16.
Different processes under the null and the alternative are considered. The
sampling frequency n = 80 corresponds to 5-minute intraday observations.

confidence interval → 90% 95% 99% 99.9%

Case 1: continuous processes

S80,16(4.5) 9.1 3.6 0.2 0.0
S80,16(2) 8.2 3.8 1.2 0.2
S80,16(1) 11.0 5.6 2.4 1.1

Case 2: multi-jump in N = 4 assets

S80,16(4.5) 7.5 3.8 0.4 0.0
S80,16(2) 8.6 4.6 0.7 0.1
S80,16(1) 11.5 6.8 2.6 1.7

Case 3: multi-jump in N = 15 assets

S80,16(4.5) 10.4 5.9 2.0 1.2
S80,16(2) 85.4 83.4 80.9 78.7
S80,16(1) 95.1 94.5 93.6 93.2

Case 4: small multi-jump

S80,16(4.5) 7.9 5.0 1.1 0.0
S80,16(2) 55.5 51.4 47.9 44.0
S80,16(1) 82.3 81.4 80.0 79.6

Case 5: big multi-jump

S80,16(4.5) 75.7 72.1 66.7 61.4
S80,16(2) 99.0 99.0 98.9 98.9
S80,16(1) 98.9 98.9 98.9 98.9

Summarizing, our simulation experiments indicate that the bandwidth parameter, which

trades off size and power, can always be set (with an automated procedure) to get correct

size and reasonable power. Moreover, by tuning the bandwidth parameter the test can

be sensibly used to detect multi-jumps with a given maximum order M , up to the total

number N of assets employed.
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4.4 Comparison with univariate tests

An alternative way to test for multi-jumps is the intersection of univariate test, also named

co-exceedance rule, as in Gilder et al. (2014). In this section we show, with simulated

data, that the new multi-jump test proposed in this paper is much more powerful than

the intersection of univariate tests.

We state the co-exceedance rule as follows: reject the absence of multi-jumps in the N -

dimensional price vector if the absence of jumps is rejected (based on a univariate jump

test) for each component. We compare three univariate jump tests: the CPR test of

Corsi et al. (2010), the BNS test of Barndorff-Nielsen and Shephard (2006) and the ABD

test of Andersen, Bollerslev and Dobrev (2007), all described in Appendix B.2.

We simulate 1,000 paths of N = 16 stocks, with the continuous part as in subsection 4.3.

Each path contains a single multi-jump across the 16 stocks, with jump sizes normally

distributed with mean being equal to 8
√

∆ and standard deviation 2
√

∆. Hence, jump

sizes are sufficiently large on average, but show dispersion such that some of the univariate

jumps might be smaller (we recall that the continuous daily variance hovers around 1).

Table 5 shows size and power for univariate jump tests and multi-jump tests based on the

Sn,N statistics and the co-exceedance rule. For univariate tests, we confirm the findings in

the literature (see Dumitru and Urga, 2012 for a wider comparison). The most powerful

test is ABD, but at the cost of a distorted size. CPR and BNS are correctly sized, but

CPR has higher power, thus striking a superior balance. For this reason, we mainly use

CPR for detecting univariate jumps in the empirical application in Section 5.

For multi-jump test, the Sn,N proposed here is much more powerful than the co-exceedance

rule. The intersection of CPR would miss nearly 75% true multi-jumps at the 95%

confidence level; the intersection of ABD misses only 34% at the same confidence level,

but just because its size is distorted. This is not totally surprising: the co-exceedance rule

with large N is too stringent unless the confidence interval used is small enough, at the
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Table 5: Shows the size and power of the proposed test in comparison with
the co-exceedance rule, for the case N = 16, and for univariate jump tests. The
size is computed under the assumption of continuous processes. The sampling
frequency n = 80 corresponds to 5-minute intraday observations.

confidence interval → 90% 95% 99% 99.9%

Multi-jump tests: power

S80,16(2) 98.6 98.5 98.5 98.4⋂16
i=1CPR 32.7 25.1 9.1 1.8⋂16
i=1 BNS 14.2 7.9 1.5 0.0⋂16
i=1 ABD 71.8 66.0 53.7 37.1

Univariate tests on individual stocks: power

CPR 91.2 89.0 84.4 73.9
BNS 86.0 81.9 71.5 56.1
ABD 97.0 96.6 95.1 92.8

Multi-jump tests: size

S80,16(2) 7.7 2.6 0.3 0.0

Univariate tests on individual stocks: size

CPR 9.2 5.3 2.1 0.0
BNS 8.6 4.8 1.9 0.0
ABD 17.3 10.8 3.0 0.8

cost of increasing spurious detection of univariate jumps. The size of the Sn,N, computed

on a multi-variate process without jumps, is again reasonably correct. The size of the

intersection tests cannot be reported since the distribution under the null is unknown.

It is also interesting to note that the Sn,N can be conveniently used as a preliminary

tool in a two-steps procedure to detect days with jumps in the first step, and then

complemented by univariate tests, applied singularly to each stock, in the second step.

Moreover, Sn,N can be much more effective in detecting univariate jumps (which could

pass through standard univariate tests, as also shown by Bollerslev et al., 2008) when
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they are synchronous. Indeed, the power of Sn,N declines at a much slower rate than the

power of univariate tests when increasing the confidence interval. After all, many jumps

are better seen than only one.

These considerations can be important for empirical studies, since jumps (and multi-

jumps) are rare events. For example, with N = 2, 000 days, testing against a jump

arrival rate of 2% per day using CPR at 99% confidence interval, we expect (based

on figures in Table 5) to detect 35.8 true jumps (out of 40) and 20 spurious jumps,

which would jeopardize empirical work based on these measures. For this reason, very

large confidence intervals (such as 99.9% or 99.99%) are tipically used in practice. With

confidence intervals so selective, the Sn,N could be an effective companion tool for jump

detection, which is certainly more effective if these jumps are actually multi-jumps. This

can be especially important when detecting jumps in large portfolios, like the stock index,

as we further discuss in Section 5.

To summarize, the results in this subsection show that the co-exceedance rule is not

accurate, even when it is based on relatively powerful univariate tests, while the multi-

jump Sn,N test proposed here is powerful and accurate, thus indicating a strong preference

for the latter in empirical work. We point out that such a feature would be crucial in

a number of applications, for instance when dealing with the identification of systemic

multi-jumps.

5 Empirical application

The data set we use for the empirical application is the collection of N = 16 blue chip

stocks quoted on the New York Stock Exchange and belonging to four different economic

sectors, and of the S&P500 index. The stocks and the corresponding ticker are listed in

Table 6. The data were recovered from the TickData One Minute Equity Data (OMED)

dataset, from 2 January 2003 to 29 June 2012, for a total of 2, 392 trading days. The data
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Table 6: Reports the list of the sixteen blue chip stocks used in the empirical
application, their ticker and the estimated β computed with respect to the
S&P500 index and used in the asset allocation exercise in Section 5.5.

Company Ticker β

Bank of America BAC 1.77
Citigroup Inc. C 1.70
JPMorgan Chase & Co. JPM 1.60
Wells Fargo & Company WFC 1.52
Boeing BA 0.95
Caterpillar Inc. CAT 1.18
FedEx Corporation FDX 1.02
Honeywell International Inc. HON 1.03
Hewlett-Packard Company HPQ 0.79
International Business Machines Corp. IBM 0.93
AT&T Inc. T 1.05
Texas Instruments Incorporated TXN 0.82
Kraft Foods Inc. KFT 0.57
PepsiCo, Inc. PEP 0.55
The Procter & Gamble Company PG 0.56
Time Warner Inc. TWX 1.05

went trough a standard filtering procedure. TickData one-minute equity data are adjusted

for corporate actions such as mergers and acquisitions or symbol changes. Moreover, the

underlying tick data used to build 1-minute time series are first controlled for cancelled

trades, or records not temporally aligned with previous/subsequent data; then filtered to

identify bad ticks which are corrected using validation with third-party sources.

In our empirical application, we use returns at the 5-minutes frequency, corresponding to

n = 77 intraday returns. This frequency represents a tradeoff between achieving enough

statistical power and avoiding distortions which could potentially arise from microstruc-

ture noise.
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Table 7: Reports the frequencies of rejections (in percentage) for the null
hypothesis of absence of co-jumps between stock pairs (that is, the percentage
of days with co-jumps), tested with the proposed multi-jump test S77,2(6.5) at
0.1% confidence level. The global average of rejections among pairs is 1.33%.

C JPM WFC BA CAT FDX HON IBM HPQ TWXT KFT PEP PG TXN
BAC 1.55 1.92 1.80 0.84 0.88 1.17 1.17 0.96 1.09 0.88 1.09 1.59 1.17 0.79 0.92
C 1.46 1.63 0.54 1.00 0.92 1.17 1.17 1.05 0.67 1.09 1.34 0.79 0.67 0.84
JPM 2.17 1.05 1.09 1.63 1.25 1.59 1.21 1.13 1.17 1.80 1.42 1.05 0.92
WFC 1.25 1.21 1.09 2.01 1.59 1.34 1.00 1.30 1.76 1.05 1.17 0.84
BA 1.51 1.92 2.22 1.34 0.84 1.05 1.55 2.63 1.09 1.30 1.30
CAT 1.67 1.76 1.13 1.21 1.30 1.51 2.09 0.88 1.05 0.79
FDX 1.71 1.42 1.42 1.09 1.76 1.92 1.17 1.09 0.96
HON 1.46 1.30 1.13 1.96 2.63 1.34 1.84 1.63
IBM 1.63 1.21 1.84 2.05 1.42 1.09 0.96
HPQ 0.75 1.25 1.55 1.05 0.84 0.92
TWX 0.92 1.55 0.59 1.00 0.67
T 2.38 1.55 1.55 1.17
KFT 2.34 2.01 1.71
PEP 1.55 1.05
PG 1.25

5.1 Multi-jumps in the market

We start by applying the co-jumps test (N = 2) for all the 120 pairs throughout all the

sample. Table 7 reports the percentage of rejections of the null at the 99.9% confidence

level for all pairs. Co-jumps are significant events. On average (among pairs), we detect

co-jumps in 1.33% of days. The low probability of co-jumps is in line with other existing

empirical work (see, e.g., Table III of Lahaye et al., 2011 for stock indexes and FX rates).

The co-jumps are distributed quite uniformly among stock pairs. The maximum amount

of rejections is obtained between HON and KFT (2.63%), while the minimum is observed

between C and BA (0.54%).

We then detect multi-jumps among all 16 stocks using a confidence interval 1 − α such

that the expected number of spurious detection in the sample is 0.1 asymptotically, that

is α = 4.18 · 10−5. We are thus looking for solid rejection of the null, that is strong

signals and virtually no false positives. We use bandwidth parameters hn between 1 and

3. As documented in the simulation study, the higher bandwidth hn = 3 corresponds to

more correct size against the null of absence of multi-jumps in all the 16 stocks, meaning

that the null would include the case of multi-jump between M = 15 stocks. This is
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Figure 3: Reports the number of multi-jumps detected by the test introduced
in Section 3. The test outcome is reported for different bandwidth parameters.
The smaller bandwidth hn = 1 corresponds to the detection of at least M ' 5
multi-jumps. The larger bandwidth hn = 3 corresponds to the detection of at
least M ' 15 multi-jumps.

certainly too stringent for empirical analysis. Table 4 shows instead that, with the lower

bandwidth hn = 1, the test is reasonably sized against the contemporaneous presence of

M = 4 multi-jumps (at least). Thus, we interpret the rejection of the null with 1 ≤ hn ≤ 3

as a signal for the presence of a significant multi-jumps in at least M stocks, with M ≈ 5

for hn = 1 and M ≈ 13 for hn = 2 (see Figure 9). In the case hn = 2, therefore, the

multi-jump would involve all the four economic sectors.

Figure 3 reports the number of detected multi-jumps corresponding to different band-

widths. Their number vary from 481 (20.1% of the sample) at hn = 1 to just 3 (0.13%

of the sample) at hn = 3. Thus, multi-jumps are largely statistically significant in our

sample, but multi-jumps across many stocks are rare events.

However, these rare events are strongly economically significant. Table 8 reports the dates

of the 22 multi-jumps detected with hn = 2, and associates macroeconomic/financial

information to each date; it also reports the corresponding VIX daily changes, SP500

percentage change and percentage volume (aggregated over all 16 stocks) changes. We can
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Table 8: Multi-jump dates (when the test is implemented with hn = 2, that is
with approximately more than M ' 13 multi-jumps) are listed together with i)
multi-jump direction, ii) percentage change in S&P500, iii) percentage volume
change, iv) VIX difference and v) economic/financial events occurred on those
days.

date Multi-jump
direction

SP500
change
(%)

Volume
change
(%)

VIX
change

Economic/Financial events

25-Jun-2003 negative −0.83 +1.81 +0.06 FOMC meeting cuts federal fund
rate of 25bps

18-Apr-2006 positive +1.71 +35.19 −1.18 Release of minutes of FOMC meet-
ing of 27-28 Mar

08-Aug-2006 negative −0.34 +29.23 −0.00 FOMC keeps its target for the fed-
eral funds rates

18-Sep-2007 positive +2.92 +30.98 −6.13 FOMC lowers its target for the fed-
eral funds rates by 50 bps

25-Feb-2008 positive +1.38 −5.74 −1.03 FED Term Auction Facility
16-Jul-2008 positive +2.51 +4.70 −3.44 Release of minutes of FOMC meet-

ing of 24-25 Jun
29-Sep-2008 negative −8.81 +15.37 +11.98 FOMC meeting unscheduled
10-Feb-2009 negative −4.91 +29.58 +3.03 U.S. Treasury Secretary Geithner

announces a Financial Stability Plan
17-Feb-2009 both −4.56 +20.10 +5.73 27-28 FOMC minutes released on

Feb 18
23-Feb-2010 negative −1.21 +14.80 +1.43 FED releases minutes of its discount

rate meeting on January 25, 2010.
06-May-2010 negative −3.24 +49.28 +7.89 The Flash Crash
28-May-2010 negative −1.24 −7.66 +2.39 FED announces three small auctions

through the Term Deposit Facility
01-Sep-2010 positive +2.95 +13.44 −2.16 Release of minutes of FOMC meet-

ing of 27-28 Mar (Aug 31)
23-Jun-2011 positive −0.28 +32.84 +0.77 FOMC meetings (21 and 22 June)
01-Jul-2011 positive +1.44 −34.12 −0.65 Arab Spring starts
01-Aug-2011 negative −0.41 −2.19 −1.59 Unscheduled FOMC meeting
01-Sep-2011 positive −1.19 −18.67 +0.20 Release of minutes of FOMC meet-

ing of 27-28 Mar (Aug 30)
31-Oct-2011 negative −2.47 −7.49 +5.43 FOMC committee scheduled for 1-2

November
23-Nov-2011 negative −2.21 −3.50 +2.01 Release of the minutes of the FOMC

committee of 1-2 November
28-Nov-2011 positive +2.92 +50.79 −2.34 FOMC meeting unscheduled
03-Apr-2012 negative −0.40 +7.99 +0.02 13 March FOMC minutes released
14-Jun-2012 positive +1.08 −3.91 −2.59 Federal Reserve Board issues en-

forcement actions

see that almost all the multi-jumps in the Table can be easily associated with impactful

economic news, mainly related to FED activity, more prominently FOMC meetings, but

also important financial and global news. Moreover, the traded volume tends to be

considerably higher (than the previous day) on days in which a multi-jump occurs. The

VIX index tends to move, in multi-jump days, in an opposite direction with respect to

the market, as also noticed in Todorov and Tauchen (2010). Below we provide formal

statistical evidence of a significant increase of the variance premium associated with

multi-jumps.
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Multi-jumps are also typically, but not always, associated with jumps in the S&P 500

stock index. We use three tests for detecting jumps in the stock index: the ABD test,

the BNS test and the CPR test (see Appendix B.2 for their description) at the 99.9%

confidence interval. The left panel of Table 9 reports the percentage of cases in which,

in a day with a multi-jump, we also detect a jump in the index. We can see that testing

for jumps in the index results in a significant information loss with respect to testing for

multi-jumps. The test with the highest overlap is ABD, which however is also the test

with largest size distortions (that is, with supposedly more false positives).

The fact that decreasing the bandwidth parameter we have less overlap between multi-

jumps and jumps in the index is not surprising: jumps in the index are easier to detect

in the presence of multi-jumps among more constituents. The fact that jumps in the

stock index are not detected in all multi-jump days deserves further investigation. This

could be due to a subset effect (only the 16 stocks considered here jumped, but not the

other index constituents) or to a power effect (if the univariate tests on the index are

less powerful than the multi-jump test). To shed light on this issue, we also compute the

univariate jump tests on the equally weighted portfolio of the sixteen stocks (right panel

of Table 9), thus eliminating the subset effect. We can indeed observe a slight increase of

the performance of CPR and ABD tests, but not such to fill the gap with the multi-jump

test. The performance of BNS on the equally weighted portfolio is even worst. This result

demonstrates that the power effect is dominant: a multi-jump in the 16 stocks certainly

implies a jump in their portfolio, which however the univariate tests are often unable to

detect. The problem is very severe for the BNS test, whose performance is particularly

poor. These results altogether suggests that it is significantly more powerful to test for

multi-jumps among stocks than for jumps in a portfolio. The next sections also show

that the additional information carried by the multi-jump test, which cannot be revealed

by univariate jump tests, is economically significant.

Finally, most jumps in the index can be associated to multi-jumps in the stocks: using

CPR at 99.9% confidence interval, we find 157 jumps in the index (6.56% of the sample).
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Multi-jumps and jumps
in the S&P 500 index

hn = 2 hn = 1.5 hn = 1

CPR 59.1% 43.2% 33.3%
BNS 40.9% 25.0% 16.7%
ABD 81.8% 63.6% 58.9%

Multi-jumps and jumps
in the equally weighted portfolio

hn = 2 hn = 1.5 hn = 1

CPR 68.2% 54.5% 40.0%
BNS 36.4% 22.7% 13.3%
ABD 90.9% 75.0% 64.4%

Table 9: Reports the percentage of days with a detected multi-jumps (accord-
ing to the bandwidth parameters hn = 2, 1.5, 1) in which we also detect a jump
in the S&P500 index (left panel) and in the equally weighted portfolio of the
16 stocks (right panel) according to three different jump tests at the 99.9%
confidence interval. Testing for a jump in the portfolio is less powerful than
testing for multi-jumps among constituents.

Of these jumps, 77 correspond to days in which there is a multi-jump with hn ≥ 1. Thus,

jumps in the index can be typically (but not always) associated with multi-jumps in its

most liquid constituents. The remaining jumps in the index could be explained by jumps

in a subset of constituents with not enough overlap with the stocks considered here, or

by size distortions larger than what predicted by our simulated data.

5.2 Jumps, multi-jumps and the variance risk premium

This section shows the relevance of detecting multi-jumps in the data (with respect to

jumps in the index) by associating their occurrence to changes in the variance risk pre-

mium. The variance risk premium on day t for a given maturity τ is defined as:

V RPt = QV Q(t, t+ τ)−QV (t, t+ τ) (15)

where QV Q(t, t + τ) is the risk-neutral quadratic variation of the stock index between

times t and t+ τ , and QV (t, t+ τ) is the actual quadratic variation in the same interval.

Bollerslev et al. (2008) highlight the empirical potential of the variance risk premium by
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showing that V RPt carries significant forecasting power for future returns; see also Carr

and Wu (2009); Bollerslev and Todorov (2011). We use τ = 1 month and we estimate

V RPt in our sample using:

V̂ RPt = V IX2
t,t+30 − R̃V t,t+30 (16)

where V IXt,t+30 is the 30-days VIX index computed by CBOE, that is the model-free

implied volatility (Jiang and Tian, 2005), and R̃V t,t+30 is the forecasted realized variance

in the same period obtained with the regression:

logRVt,t+30 = α1 + α2 logRVt−30,t−1 + α3 logRVt−90,t−1 + εt, (17)

where εt is iid noise and

RVt,t+h = 252 · ψ ·
∑

t≤t′≤t+h

RVt′ ,

with RVt′ being the 5-minutes open-to-close realized variance on day t, properly rescaled

by 252 (to convert it to yearly units) and by the constant ψ, which is the ratio between

the sum of squared close-to-close S&P500 daily returns and the average of RV in the

sample, and which is meant to take into account the contribution of overnight returns to

the total variance.

The time series of the estimated variance risk premium in our sample is shown in Figure

4. As expected from the theory, it is almost always positive. We associate it to jumps

in the stock market index (S&P500) and multi-jumps in the sample of sixteen stocks, by

using the following regression models, in which the variance risk premium is driven by

an autoregressive process and by dummy variables for jumps,

V̂ RP t = γ0 + γ1V̂ RP t−1 + γJJ̃t + γMJM̃J t + γ−MJM̃J t · I{rSP
t <0} + εt, (18)
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Figure 4: Reports the daily estimated variance risk premium, computed as in
equation (16), for the available sample.

where t denotes the day, J̃t is an indicator function signaling jump in S&P500 index (we

use the CPR test at 99.9% confidence level), M̃J t is an indicator function for the presence

of a multi-jump (with hn = 2, 1.75 and 1.5), I{rSP
t <0} is an indicator function for negative

close-to-close return on S&P500 on day t and εt are iid shocks with zero mean and finite

variance.

We also run the same regression with lagged dummy variables, that is with J̃t → J̃t−1,

M̃J t → M̃J t−1 and I{rSP
t <0} → I{rSP

t−1<0}, to examine the predictive power of multi-jumps

on the variance risk premium. Estimation results, adjusted with the standard Newey and

West correction, are presented in Table 10 for various restrictions and multi-jump test

bandwidth parameters.

We find that the constant γ0 and the auto-regressive coefficient γ1 are strongly signifi-

cant. More importantly, our results show that the occurrence of jumps in the index is

insignificant (or mildly negative) when regressed together with variance premium, and

thus cannot be associated to it. On the contrary, multi-jumps are significant and have a

strong impact, especially when they contribute to a market downturn. When the dum-

mies are lagged, results are less strong but the signs do not change. The average impact
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Table 10: Estimates (Newey-West corrected) of model (18) with different
restrictions and different choices of the multi-jump dummy. T-statistics are in
parenthesis. Top panel: regression with contemporaneous dummies. Bottom
panel: regression with lagged dummies. One star denotes 90%, two star 95%
and three stars 99% significance.

Contemporaneous regressions

γ0 31.7∗∗∗ 31∗∗∗ 30.3∗∗∗ 30.2∗∗∗ 31.5∗∗∗ 30.7∗∗∗ 30.1∗∗∗ 28.8∗∗∗ 31.3∗∗∗ 31.3∗∗∗

(5.18) (5.2) (5.17) (5.17) (5.18) (5.16) (5.1) (4.97) (5.15) (5.14)

γ1 0.836∗∗∗ 0.835∗∗∗ 0.833∗∗∗ 0.832∗∗∗ 0.835∗∗∗ 0.835∗∗∗ 0.832∗∗∗ 0.83∗∗∗ 0.835∗∗∗ 0.835∗∗∗

(24) (24.1) (23.8) (23.6) (24) (24.1) (23.7) (23.7) (24) (24)

γJ −0.41 −8.15 −8.52 −4.67
(-0.0491) (-

0.881)
(-0.98) (-0.534)

γMJ 89.3 93.9∗ −96∗∗∗

(hn = 2) (1.64) (1.68) (-2.94)

γMJ 104∗∗∗

(hn = 1.75) (2.75)

γMJ 60.6∗

(hn = 1.5) (1.86)

γ−MJ 184∗∗∗ 188∗∗∗ 282∗∗∗

(hn = 2) (2.75) (2.78) (3.85)

γ−MJ 193∗∗∗

(hn = 1.75) (3.82)

γ−MJ 176∗∗∗

(hn = 1.5) (3.81)

Lagged regressions

γ0 32.2∗∗∗ 31.5∗∗∗ 31.6∗∗∗ 30.5∗∗∗ 32.2∗∗∗ 31.5∗∗∗ 31.7∗∗∗ 31.4∗∗∗ 32.2∗∗∗ 32.2∗∗∗

(5.3) (5.27) (5.25) (5.2) (5.3) (5.27) (5.27) (5.25) (5.31) (5.31)

γ1 0.835∗∗∗ 0.835∗∗∗ 0.835∗∗∗ 0.831∗∗∗ 0.835∗∗∗ 0.835∗∗∗ 0.836∗∗∗ 0.834∗∗∗ 0.834∗∗∗ 0.834∗∗∗

(24) (24) (24) (23.5) (24) (23.9) (23.9) (23.6) (23.9) (23.9)

γJ −7.44 −10.8∗ −10.5∗ −9.66∗

(-1.48) (-1.79) (-1.92) (-1.71)

γMJ 34.5 40.6 −22.5∗∗∗

(hn = 2) (0.804) (0.91) (-2.58)

γMJ 4.07
(hn = 1.75) (0.0728)

γMJ 51.8
(hn = 1.5) (1.34)

γ−MJ 67 71.7 93.8
(hn = 2) (1.07) (1.13) (1.52)

γ−MJ 2.49
(hn = 1.75) (0.0303)

γ−MJ 29.4
(hn = 1.5) (0.608)
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of contemporaneous multi-jumps ranges from 60.6 to 104 points, and from 176 to 193

points when associated with negative S&P500 returns. This is substantial, since the av-

erage variance risk premium in our sample is equal to 193.6. This means that variance

premium almost doubles (on average) in days with a multi-jump and a downturn of the

market. The effect of downward multi-jump is so strong that it subsides the effect of

jumps and overall multi-jump, the latter becoming significantly negative in the encom-

passing regression (last column of Table 10) indicating that positive multi-jump have the

opposite effect on the variance risk premium.

Summarizing, multi-jumps, and precisely negative ones, can be associated with a signif-

icant increase in the variance risk premium, while index jumps cannot. The inability of

jumps in capturing variance risk premia changes might depend on the documented in-

adequacy of nonparametric univariate tests in capturing economically significant jumps.

From a theoretical point of view, our finding corroborates the view that non-Gaussian

shocks to fundamentals (sometimes referred to as disasters) have a substantial impact

on risk premia, see e.g. Barro (2006); Gabaix (2012) and Drechsler and Yaron (2011);

Drechsler (2013) for economic models directly focusing on the relation between jumps in

fundamentals and the variance risk premium. From this theoretical perspective, the ab-

sence of correlation between jumps in the stock market index and variance risk premium

changes is rather puzzling. Indeed, also Todorov (2010) shows a strong link between

index jump measures and variance risk premium changes through the estimation of a

parametric model.5 This paper documents that this puzzle is due to the relatively low

power of univariate jump tests to detect systemic market events affecting fundamental

value, and that this shortcoming can be overcome by testing for multi-jumps in a (not

very large, but economically representative) stock panel.

5In his preliminary analysis, Todorov (2010) also reports a significant correlation between the variance
risk premium premium and squared jump size, measured as the difference between Realized Variance
(RV) and Tripower Variation (TV). We also find a significant correlation coefficient of 0.3927 between
the two measures (we estimate squared jump size as the difference between RV and Threshold Bipower
Variation), however this correlation disappears after testing for jumps. It is important to note that, in
our sample, the estimated squared jump size is also correlated with RV (the coefficient is 0.4312), thus
his observed correlation with VRP could be spuriously induced by the correlation between VRP and RV.
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5.3 Forecasting variance

We assess the impact of multi-jumps on future variance by estimating the following

regression model, which is labelled HAR− J −MJ :

log V
(i)
t = β

(i)
0 + β

(i)
d log V

(i)
t−1 + β(i)

w log V
(i)
t−5:t−1 + β(i)

m log V
(i)
t−22:t−1

+ β
(i)
J J̃

(i)
t−1 + β

(i)
MJM̃J t−1 + ε

(i)
t , (i = 1, . . . , 16 + 1) (19)

where t denotes the day, V
(i)
t is a realized volatility measure of stock i (we use threshold

bipower variation, see Appendix B.3),

log V
(i)
t−h:t−1 =

1

h

t−1∑
t′=t−h

log V
(i)
t′ ,

J̃
(i)
t−1 is an indicator function signaling jump detection on day t− 1 for the stock i (we use

the CPR test at 99.9% confidence level), M̃J t−1 is an indicator function for the presence

of a multi-jump (we use hn = 1.75 in this exercise, which is the case in which 44 multi-

jumps are detected; results with different bandwidths, not reported here, deliver similar

results) and ε
(i)
t are potentially correlated iid shocks with zero mean and finite variance.

The explanatory variable M̃J is the same across all stocks.

The model is a natural multivariate generalization of the univariate models adopted in

Andersen, Bollerslev and Diebold (2007), Corsi et al. (2010) and Busch et al. (2011),

which are all based on the Corsi (2009) HAR model. The usual hard-to-beat long range

dependence in volatility delivered by the HAR model is complemented by an idiosyncratic

component (the jumps in the single stocks) and a systemic component (multi-jumps).6

The idiosyncratic components can be associated to news, as shown in the empirical work of

Lee (2012), Evans (2011) and Gilder et al. (2014). We estimate the model for i = 1, . . . , 17,

where the 17th asset is the S&P500 index, using two-steps FGLS (see Appendix C). We

6Despite our multi-jump indicator variable is extracted from 16 equities only, we believe the indicator
has a systemic interpretation given the large size and liquidity of the stocks in our dataset, and the fact
they span at least four economic sectors.
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Figure 5: Reports a scatter plot of two t − stats: on the bottom axis, the
t − stats associated with the significance test for the impact of the multi-
jumps dummy on the volatility; on the left axis, the t − stats associated with
the significance test of the idiosyncratic jump dummy on the volatility. The
graph includes results for both the sixteen stocks and the stock index. The
scatter plot shows that multi-jumps affect both stock and index volatility, while
only idiosyncratic jumps in the index have a significant impact on the index
volatility.

concentrate on estimates of the parameters β
(i)
J and β

(i)
MJ , for i = 1, . . . , 17. We also

estimate the models with the restrictions β
(i)
J = 0 or β

(i)
MJ = 0.

Estimated coefficients for the three estimated models are reported in table 11, while

Figure 5 shows visually the t-statistics of the estimated coefficients β̂
(i)
J (when β

(i)
MJ = 0)

together with those of the coefficients β̂
(i)
MJ = 0 (when β

(i)
J = 0). Idiosyncratic jumps

display a significant impact on volatility for the S&P500 index (as found in Corsi et al.,

2010) but have no forecasting power for individual stocks. We instead estimate a positive

impact of multi-jumps on both stocks and the index, which is not negligible in magnitude:

The average estimated coefficient is 0.0693 to be compared to average log V
(i)
t in our
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Table 11: Estimated jump and multi-jump coefficients (with t-stats in paren-

thesis) for the model (19). The first column is for the model with β
(i)
MJ = 0; the

second column is for the model with β
(i)
J = 0; the third and the fourth column

are for the unrestricted model. One star denotes 90%, two star 95% and three
stars 99% significance.

asset β̂
(i)
J β̂

(i)
MJ β̂

(i)
J β̂

(i)
MJ

(β
(i)
MJ = 0) (β

(i)
J = 0) unrestricted

BAC 0.0194 0.0811 0.0125 0.0790
(0.9166) (0.9491) (0.5204) (0.0790)

C 0.0156 0.0835 0.0020 0.0832
(0.7024) (1.2495) (0.0731) (0.0832)

JPM −0.0067 0.0832 −0.0330 0.0900
(−0.3534) (1.2591) (−1.3903) (0.0900)

WFC −0.0371∗∗ 0.0802 −0.0370∗ 0.0876
(−2.2456) (1.1716) (−1.7792) (0.0876)

BA −0.0031 0.1144 0.0244 0.1109
(−0.1450) (1.6258) (0.8671) (0.1109)

CAT −0.0121 0.1158 0.0117 0.1142
(−0.5653) (1.5979) (0.4193) (0.1142)

FDX −0.0254 0.0933 −0.0357 0.0975
(−1.0980) (1.3017) (−1.2369) (0.0975)

HON 0.0072 0.1296∗∗ 0.0285 0.1224∗

(0.3758) (1.9799) (1.0790) (0.1224)

IBM 0.0172 0.0669 0.0337 0.0603
(0.7294) (0.9901) (1.3911) (0.0603)

HPQ 0.0294 0.0568 0.0514 0.0490
(1.2688) (0.7376) (1.5821) (0.0490)

TXN −0.0165 0.0147 −0.0147 0.0167
(−0.8506) (0.2251) (−0.5784) (0.0167)

T 0.0322 0.0456 −0.0089 0.0470
(1.6140) (0.7477) (−0.3366) (0.0470)

KFT 0.0257 0.0678 0.0392 0.0668
(0.9924) (0.9519) (1.3616) (0.0668)

PEP −0.0121 0.0353 −0.0486∗ 0.0438
(−0.5238) (0.5626) (−1.8916) (0.0438)

PG 0.0214 0.0141 0.0060 0.0129
(0.9731) (0.2089) (0.1938) (0.0129)

TWX 0.0254 0.0269 −0.0026 0.0272
(1.4019) (0.4450) (−0.1143) (0.0272)

SP500 0.1261∗∗∗ 0.1676∗∗∗ 0.1147∗∗∗ 0.1334
(4.7277) (2.6606) (4.2596) (0.1334)
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sample, which is 0.3348, thus implying a +20.7% increase on average. Individually, these

coefficients are not statistically significant (probably due to the scarcity of multi-jumps

in the data), however they are all positive, while the coefficients on individual jumps are

both positive and negative.

These findings complement the evidence of Corsi et al. (2010) on the impact of jumps

on volatility forecasting. Jumps in stocks do not seem to possess forecasting power on

future stock volatility, unless they occur in multiple stocks, signaling a systemic event

instead of an idiosyncratic event. When this happens, we typically see a jump in the stock

index, and this explains why jumps are instead very significant in forecasting the index

future variance. However, as shown in the previous section, this is not accompanied by

an increase of the variance risk premium (which is instead observed when a multi-jump

occurs).

5.4 Forecasting correlations

We assess the impact of multi-jumps on future stock correlations by estimating the fol-

lowing regression model, which is labelled corrHAR− CJ −MJ :

ρ̃
(i,j)
t = β

(i,j)
0 + β

(i,j)
d ρ̃

(i,j)
t−1 + β(i,j)

w ρ̃
(i,j)
t−5:t−1 + β(i,j)

m ρ̃
(i,j)
t−22:t−1

+ β
(i,j)
CJ C̃J t−1 + β

(i,j)
MJ M̃J t−1 + ε

(i,j)
t , (20)

(i = 1, . . . , 16, j = i+ 1, . . . , 16)

where, similarly to model (19), t indexes the day, ρ̃
(i)
t is the Fisher transformation of real-

ized correlations between stock i and stock j 6= i (Appendix B describes how correlations

are measured by means of intraday data),

ρ̃
(i)
t−h:t−1 =

1

h

t−1∑
t′=t−h

ρ̃
(i)
t′ ,
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C̃J
(i)

t−1 is an indicator function signaling co-jump detection on day t − 1 between stock

i and stock j (we use our multi-jump test with N = 2 at 99.9% confidence level and

hn = 6.5), M̃J t−1 is the same multi-jump indicator described below Eq. (19), and ε
(i,j)
t

are potentially correlated iid shocks with zero mean and finite variance. We estimate the

model with 16 stocks, so that the dimension of the model is 120. As before, we estimate

the model for 120 pairs using two-steps FGLS (see Appendix C) and we concentrate on

estimates of the parameters β
(i,j)
CJ and β

(i,j)
MJ . Again, the model is made by two parts: the

first meant to capture the highly significant serial dependence in correlations, the second

one to capture a idiosyncratic component (the co-jumps among pairs) and a systemic

component (multi-jumps in the market). Lahaye et al. (2011) indeed complement the

evidence on the relation between jumps and news by showing that also co-jumps between

pairs are typically associated to macroeconomic releases.

We first estimate the corrHAR − CJ − MJ with the restriction β
(i,j)
MJ = 0. Figure 6

reports the histograms of the β̂
(i,j)
CJ estimated coefficients in this case, together with their

t-statistics. We find that co-jumps have very small positive impact on future correlations,

at least when judged individually; the implied average correlation change ∆ρ̃ after a co-

jump is −0.00015 and never significant; the distribution of the t-statistics is consistent

with a standard normal distribution. In a related study, Clements and Liao (2013)

instead found, using a procedure similar to that proposed by Bollerslev et al. (2008),

that the occurrence of common jumps between the stocks are unrelated to the level

of volatility or correlation. However, their empirical findings suggest that correlations

decrease immediately after a co-jump. Our results cannot confirm this finding.

We then drop the co-jumps from model (20), and we estimate it with the restriction

β
(i,j)
CJ = 0. The distribution of estimated coefficients β̂

(i,j)
MJ are reported in Figure 7, to-

gether with the associated t-statistics. Multi-jumps are instead very significant in explain-

ing future correlations. The average coefficient, that is the average implied correlation

change after a multi-jump, is 0.0827, with a robust t-statistics of 3.89 and also substantial

in absolute terms since the average correlation, in our sample, is 0.2955: This implies
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Figure 6: Reports a frequency histogram of the estimated impact of the co-

jump coefficients β̂
(i,j)
CJ on the correlation among stock pairs. These have been

obtained from the model (20) under the restriction β
(i,j)
MJ = 0. We remind that

the coefficients β̂
(i,j)
CJ represent the change in correlation when a co-jump takes

place. The inset plots the frequency histogram of the associated t-statistics.

a correlation increase, on average, of +28%. In this case the distribution of t-statistics

is significantly shifted to the right and individual coefficients, reported in Table 12, are

often significant on their own.

The results are confirmed when we estimate the unrestricted model. In this case, the

strong significance of multi-jumps is confirmed, while co-jumps are still not significant.

Multi-jump can again be viewed, by the light of results in Longin and Solnik (2001) who

report an increase in market correlations in turmoil periods, as the statistical counterpart

of systemic economic events.
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Figure 7: Reports a frequency histogram of the estimated impact of multi-

jump coefficients β̂
(i,j)
MJ on correlation among stock pairs. The average coeffi-

cient is 0.0827 with a t-stat of 3.89. These have been obtained from the model
(20) under the restriction β

(i,j)
CJ = 0. We remind that the coefficients β̂

(i,j)
MJ

represent the change in correlation when a multi-jump takes place. The inset
plots the frequency histogram of the associated t-statistics.
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5.5 Impact on asset allocation

We now provide an economic assessment of the impact of multi-jumps on asset allo-

cation. We have documented an increase in the volatility of individual stocks and in

the correlation among them following the occurrence of a multi-jump. These empirical

regularities imply two adverse effects on the utility of an agent allocating her wealth in

stocks: it makes her portfolio more volatile, and also reduces the potential benefits of

diversification. In this subsection we estimate the impact, in terms of utility loss, due to

the increase of volatility and correlations after a multi-jump.

To this purpose, we consider an investor that allocates her wealth among the 16 assets

considered in our empirical exercise and a risk-free asset. We assume the agent preferences

can be fully described by the mean and the variance of her portfolio. We denote by w the

16× 1 vector of relative weights invested in the stocks, while 1−w′1 is portfolio fraction

invested in the risk-free asset whose return is r; we denote by 1 a 16× 1 vector of ones.

The investor optimal allocation is derived from the maximization of the mean-variance

utility

max
w

w′ (µ− r)− γ

2
w′Σw (21)

where Σ is the 16× 16 covariance matrix of the stocks, µ is the 16× 1 vector of expected

returns and γ is the risk aversion coefficient. The well-known solution to this problem is

w =
1

γ
Σ−1 (µ− r) . (22)

We assume that expected returns are in keeping with the equilibrium paradigm. We

consider a simple CAPM model:

µ = r + β (µmkt − r) , (23)

where µmkt is the expected return on the market portfolio and β is the vector of betas,

estimated using daily returns (the market portfolio proxy being the S&P500 index) and
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reported in Table 6. We set µmkt = 7.25% and r = 4.65%, corresponding to the 1950-2014

observed annual return on S&P500 and 3-months T-bill respectively. We assume that

the investor observes an initial covariance matrix Σ equal to the average daily covariance

matrix estimated on data, and allocates her wealth according to the risk aversion γ, the

covariance matrix Σ and the vector of equilibrium returns given by Eq. (23), by using

formula (22).

According to our previous results we assume that, after a multi-jump, the covariance

matrix changes from Σ to ΣMJ . The new matrix ΣMJ is computed adding to Σ the

average impact on log-volatility and correlations implied by the models (19), (20) and

reported in Tables 11 and 12 (we use the values of the regression without idiosyncratic

jumps and co-jumps, respectively). Thus, the change from Σ to ΣMJ represents the

typical volatility and correlations inflation due to the occurrence of a multi-jump.

A multi-jump would thus lead to a change in the agent optimal allocation. Therefore,

if the agent is not aware of the impact of the multi-jump on volatility and correlations,

she faces a potential loss, since her allocation becomes sub-optimal and the occurrence

of the multi-jump endanger the diversification benefits of her portfolio since the average

correlation increases. If she decides to re-allocate, though, she could still face a utility

loss since the correlation increase could anyway reduce the diversification potential of the

new optimal portfolio.

In order to determine the impact of multi-jumps on utility, we quantify the utility loss in

terms of the certainty equivalent return (CEQ), which we compute as

CEQ = µP −
γ

2
σ2
P

where µP and σP are the mean and the standard deviation of the investor’s portfolio, see

e.g. DeMiguel et al. (2009) for a similar comparison strategy. We consider two different

cases. The first case corresponds to an agent who does not rebalance the portfolio after

the multi-jump arrival. We quantify the loss associated with the covariance matrix change
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due to multi-jumps, which we compute as

∆CEQ1 =
γ

2
w′
(
ΣMJ −Σ

)
w.

In this case we evaluate the loss due to both the increase in portfolio variance7 and the

reduction in diversification benefits of the portfolio held by the investor.

In the second case, which corresponds to an investor which rebalances the portfolio after

the multi-jump arrival, we compute the loss due to the effect of the multi-jumps both in

the covariance and in the portfolio allocation. The second loss reads

∆CEQ2 =
(
w −wMJ

)′
(µ− r)− γ

2

(
w′Σw −wMJ ′ΣMJwMJ

)
,

where wMJ is the optimal portfolio after the arrival of the multi-jump. We ignore here

the impact of transaction costs for rebalancing. Thus, while the change in utility without

rebalancing is associated only with the risk component of the CEQ, when rebalancing

the CEQ changes both for a change in the risk of the optimal portfolios as well as for

changes in the expected return.

Table 13 reports the results for various levels of risk aversion, while Figure 8 shows the

loss in terms of certainty equivalent of the two strategies, again for various levels of risk

aversion. Results indicate a substantial impact, in terms of expected utility, due to the

occurrence of multi-jumps, ranging from 42 basis points when the investor holds a levered

position and is invested roughly 200% in the stocks (borrowing at the risk-free rate), to 4

basis points for an investor who invests about 20% of her wealth in the stocks, this choice

depending on her level of risk aversion. These figures refer to the case in which the investor

does not rebalance her portfolio; however, if the portfolio is rebalanced (transaction costs

ignored) the loss in terms of certainty equivalent is very similar, ranging from 31 to 3 basis

points in the two cases mentioned above. The impact is larger with lower risk aversion

7We do not consider here the possible impact of multi-jumps on expected returns, and thus we do
not consider potential pricing issues associated with a multi-jump factor.
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Figure 8: Average certainty equivalent return loss due to the occurrence of a
multi-jump, expressed in basis points, as a function of the risk aversion coeffi-
cient used. The solid line expresses the loss in the case in which the investor
does not rebalance the portfolio after the multi-jump; the dashed line instead
is in the case of rebalancing. Rebalancing transaction costs are ignored.

(see Figure 8) since in this case the investor is willing to hold more risky assets, and thus

her utility is more impacted by the arrival of the multi-jump.

The standard error on certainty equivalent losses depends on the statistical uncertainty of

the impact of multi-jumps on correlations and volatility. The standard errors reported in

parenthesis in Table 13 are computed with a parametric bootstrap procedure which draws

correlation and volatility impacts on ΣMJ from the asymptotic distribution implied by

the estimates in Tables 11 and 12. The corresponding t-stats do not depend on the risk

aversion coefficient γ, and are estimated to be 7.71 for the case without rebalancing and

6.20 for the case with rebalancing. The negative impact of a multi-jump on the investor’s

utility is thus largely statistically significant in both cases.

The results of our simple exercise are derived in a static setting in which there is only

a change in the covariance matrix at a determined point in time. Clearly, in order to

thoroughly study the impact of multi-jumps on asset allocation strategies, we would need

a fully specified dynamic model in which the presence of multi-jumps is internalized.
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Table 13: Reports the results of the asset allocation exercise. The first column
reports the risk aversion coefficient γ. Columns 2-5 report the corresponding
total investment in stocks w′1, the portfolio mean µP , standard deviation
σP and certainty equivalent return CEQ, all expressed in percentage form.
Columns 6-7 report the new portfolio standard deviation σMJ

P and the certainty
equivalent loss ∆CEQ1 (in basis points, with standard error in parenthesis)
for an investor who does not rebalance the portfolio after the occurrence of a
multi-jump (the portfolio mean then does not change). Columns 8-10 report
the new portfolio mean µMJ

P ′ , the new portfolio standard deviation σMJ
P ′ and

the certainty equivalent loss ∆CEQ2 (in basis points, with standard error in
parenthesis) for an investor who rebalances the portfolio after the occurrence
of a multi-jump. Three stars indicate significance at 99%.

after the multi-jump

before the multi-jump without with
rebalancing rebalancing

γ w′1 µP σP CEQ σMJ
P ∆CEQ1 µMJ

P ′ σMJ
P ′ ∆CEQ2

(%) (%) (%) (%) (%) (bps) (%) (%) (bps)

0.5 199.2 10.07 32.92 7.36 35.36 41.6∗∗∗ 9.44 30.96 31.4∗∗∗

(5.39) (5.06)

1 99.6 7.36 16.46 6.00 17.68 20.8∗∗∗ 7.05 15.48 15.7∗∗∗

(2.70) (2.53)

2 49.8 6.00 8.23 5.33 8.84 10.4∗∗∗ 5.85 7.74 7.8∗∗∗

(1.35) (1.26)

5 19.9 5.19 3.29 4.92 3.54 4.2∗∗∗ 5.13 3.10 3.1∗∗∗

(0.54) (0.51)

10 10.0 4.92 1.65 4.79 1.77 2.1∗∗∗ 4.89 1.55 1.6∗∗∗

(0.27) (0.25)

∞ 0.0 4.65 0.00 4.65 0.00 0.0 4.65 0.00 0.0

However, our results suggest that, all the other things remaining equal, an investor aware

of the presence of multi-jumps would be more conservative and hold a less risky portfolio

with respect to an agent which is unaware of their presence. Indeed, the utility loss

due to the presence of multi-jumps increases with variance, so the only way to offset

the negative impact on expected utility of multi-jumps is to decrease the variance of the

optimal portfolio.

These considerations can be complemented with the theoretical results of Das and Uppal
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(2004), who develop a simple model in which an agent, endowed with power utility,

allocates wealth among assets whose returns are subject to Normal shocks and also to an

additional single Poisson shock which affects all of them simultaneously. Their common

Poisson shock can be interpreted as a multi-jump. In this case, the optimal allocation

rule is found to be different from that of an agent who ignores jumps (which is still given

by Eq. 22) and is such that an investor aware of jumps will invest less in the stocks

and hold less variance with respect to an investor who ignores jumps. Further, they also

document that the impact of jumps increases with the leverage of the position. They,

however, do not assume that the covariance matrix changes after a jump, as we do here.

Our calculations show that considering the additional impact on the covariance matrix

would strengthen their predicted effects on the optimal allocation strategy, thus inducing

an optimal strategy which is even more conservative that what predicted by their model.

We can then conclude that the impact of multi-jumps on the covariance matrix is not only

statistically significant, as shown in Sections 5.3 and 5.4, but also economically significant

since it will impact negatively, and non negligibly, the utility of a risk averse investor,

which is induced to a more conservative asset allocation strategy when multi-jumps and

their impact on the covariance matrix are fully included in the model.

6 Concluding remarks

While the recent literature produced an abundant number of theoretical and empirical

contributions about the presence of jumps in financial prices and their importance in

financial models, little effort has been devoted to multivariate jumps, and this effort was

almost exclusively devoted to the case of two assets. However, jumps are (asymptotically)

big movements, so that their detection is much easier when they occur together, and this

happens with a small but sizable frequency in the stock market.

This paper is thus meant to fill this gap in the literature by introducing a novel test for
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multi-jump detection for an arbitrary number of stocks. The test is found to be superior

to alternatives also in the case N = 2, but it delivers its best results when N is large.

The test does not need restrictive modeling assumptions, and can naturally trade off size

and power via bandwidth selection, for which we propose an automated procedure.

Using a data set of liquid constituents of S&P500, we provide clear-cut evidence on the

presence of multi-jumps in the market. Multi-jumps among several stocks are found

to be rare but economically and statistically significant events. We show that they are

correlated with big increases in the variance risk premium (which almost doubles in

day in which there is a downward multi-jump) and we document an increase in both

stock volatilities (+20% on average) and stock correlations (of stronger magnitude, +28%

on average) in days following their occurrence. These findings have a substantial and

statistically significant impact on asset allocation, which is quantifiable in a loss of roughly

20 bps per year for a mean-variance investor with unit risk aversion. Multi-jumps would

then determine a more conservative asset allocation strategy when their impact on the

covariance matrix is fully included in the allocation model.

Importantly, testing for multi-jumps in a modest panel of stocks is shown to be much

more informative than testing for univariate jumps in the stocks and the equity index.

Jumps in the index, indeed, cannot be associated to changes to the variance risk premium

despite the growing theoretical and empirical evidence suggesting that this should be the

case, and jumps and co-jumps in individual stocks cannot be associated to increases in

their volatility and correlations. We conclude that the test introduced here should replace

univariate tests when looking for systemic market events which can affect market variables

such as second moments and risk premia. We thus believe that the tool introduced in this

paper could become of fundamental help in assessing the financial role, both theoretical

and empirical, of jumps in the market.
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A Mathematical proofs

Proof of Theorem 3.1

Define Threshold Realized Variance as in Mancini (2009):

TRVN (X(i)) =

n∑
j=1

(
∆jX

(i)
)2

I{|∆jX(i)|≤H(i)
j∆,n}

, i = 1, . . . , N. (24)

where IA is the indicator function of the set A. Now, using the fact that under the assumptions
∆jX

(i)

Hj∆,n
=

Op

(
1

n1/2hn

)
→ 0 (the stochastic bandwidth can be dealt as in Theorem 2.3 of Corsi et al., 2010), write:

SRV(X(i))− TRVN (X(i)) =

n∑
j=1

(
∆jX

(i)
)2
(
K

(
∆jX

(i)

H
(i)
j∆,n

)
− I{|∆jX(i)|≤H(i)

j∆,n}

)

=
∑

∣∣∣∣∆jX(i)

Hj∆,n

∣∣∣∣≤1

(
∆jX

(i)
)2
(
K

(
∆jX

(i)

H
(i)
j∆,n

)
− 1

)

+
∑

∣∣∣∣∆jX(i)

Hj∆,n

∣∣∣∣>1

(
∆jX

(i)
)2

K

(
∆jX

(i)

H
(i)
j∆,n

)

(mean value theorem) =
∑

∣∣∣∣∆jX(i)

Hj∆,n

∣∣∣∣≤1

(
∆jX

(i)
)2

K ′

(
ξj

H
(i)
j∆,n

)
∆jX

(i)

H
(i)
j∆,n

+

n∑
j=1

(
∆jX

(i)
)2

K

(
∆jX

(i)

H
(i)
j∆,n

)
I{|∆jX(i)|>H(i)

j∆,n}
,

for a suitable random sequence ξj such that |ξj | ≤
∣∣∆jX

(i)
∣∣. By the boundedness ofK ′ and the bandwidth

process and results in Mancini (2009), the absolute value of the first term is dominated by

C · TRVN (X(i))

√
∆ log 1

∆

hn

p→ 0,

where C is a suitable constant. For the second term, in the case of finite activity Mancini (2009)

proved that when
∣∣∆jX

(i)
∣∣ > H

(i)
j∆,n only the terms where jumps occurred are left in ∆jX

(i), so that

|∆jX
(i)|

H
(i)
j∆,n

p→∞ and by the continuous mapping theorem K

(
∆jX

(i)

H
(i)
j∆,n

)
p→ 0. Using Corollary 2 in Mancini

(2009) we get the desired result (see Mancini and Gobbi, 2012 for a generalizations to the semi-martingale

case). �

Proof of Theorem 3.2
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Write:

S̃RV
N

(X(i))− TRVN (X(i)) =SRV(X(i))− TRVN (X(i))

+

n∑
j=1

(
∆jX

(i)
)2
(

N∏
k=1

(
1−K

(
∆jX

(k)

H
(k)
j∆,n

)))
︸ ︷︷ ︸

An

,

where the first term vanishes in probability asymptotically given Theorem 3.1. For the second term,

write:

An =
∑

∀k∈1,...N :

∣∣∣∣∣∆jX(k)

H
(k)
j∆,n

∣∣∣∣∣>1

(
∆jX

(i)
)2
(

N∏
k=1

(
1−K

(
∆jX

(k)

H
(k)
j∆,n

)))

+
∑

∃k∈1,...N :

∣∣∣∣∣∆jX(k)

H
(k)
j∆,n

∣∣∣∣∣≤1

(
∆jX

(i)
)2
(

N∏
k=1

(
1−K

(
∆jX

(k)

H
(k)
j∆,n

)))

:=An,1 +An,2

The term An,2 vanishes in probability since, for the k’s such that

∣∣∣∣∆jX
(k)

H
(k)
j∆,n

∣∣∣∣ ≤ 1, we can write, using the

mean value theorem:

1−K

(
∆jX

(k)

H
(k)
j∆,n

)
= K ′(ξ

(k)
j )

∆jX
(k)

H
(k)
j∆,n

→ 0,

while for the remaining k’s,

1−K

(
∆jX

(k′)

H
(k′)
j∆,n

)
p→ 1

as before. Thus we remain with An,1. Consider first the case with the indicator kernel:

Ãn,1 :=

n∑
j=1

(
∆jX

(i)
)2 N∏

k=1

I{|∆jX(k)|>H(k)
j∆,n}

which tends to 0 on Ω
N

T (Mancini and Gobbi, 2012, straightforward generalization of Theorem 4.2). On

ΩMJ,N
T Ãn,1 tends to

∑
∆X

(1)
t ...∆X

(N)
t 6=0

(
∆X

(i)
t

)2

. Indeed, Ãn,1 differs from the realized variance of the

process X(i)′ by a finite number of asymptotically vanishing terms, where X(i)′ is defined by the sum of

continuous part of X(i) and the process of multi-jumps:

X(i)′ = X(i) −
∑
t≤T

∆X
(i)
t I{∆X(i)

t 6=0
⋂

∆X
(1)
t ...∆X

(N)
t =0}. (25)

The proof for An,1 then follows by the continuous mapping theorem as for Theorem 3.1. �
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Proof of Theorem 3.3

Given Theorems 3.1 and 3.2, it is sufficient to show that a vector of statistics S′(X(1)), ..., S′(X(N)),

where

S′(X(i)) =

∑n
j=1

∣∣∣∆jX
(i)
c

∣∣∣2 (1− ηij)√
Vη SQ(X(i))

, (26)

where Xc is the purely continuous part of X, converges stably in law to multivariate normal distribution

with identity covariance matrix. In this case, we can indeed use Theorem 2 in Podolskij and Ziggel (2007)

to get the desired result. To this purpose, it is enough to prove that for generic constants c1, ..., cN the

linear combination

c1S
′(X(1)) + ...+ cNS

′(X(N)) (27)

converges to a random normal variable with zero mean and variance (c21 + ...+ c2N ). In order to simplify

the notation the proof is carried out in the case N = 2.

Denote by E∗ [·], Var∗ [·] and Cov∗ [·] respectively expectation, variance and covariance conditional on

the observed values of X. We have:

E∗

 n∑
j=1

∣∣∣∆jX
(i)
c

∣∣∣2 (1− ηij)
 =

(
1−E∗

[
ηi1
]) n∑

j=1

∣∣∣∆jX
(i)
c

∣∣∣2 = 0, (28)

for any i, and

Var∗

 n∑
j=1

∣∣∣∆jX
(i)
c

∣∣∣2 (1− ηij)
 =

(
E∗
[
(ηi1)2

]
− (E∗

[
ηi1
]
)2
) n∑
j=1

∣∣∣∆jX
(i)
c

∣∣∣4
= Var∗

[
ηi1
] n∑
j=1

∣∣∣∆jX
(i)
c

∣∣∣4 ;

(29)

Cov∗

 n∑
j=1

∣∣∣∆jX
(i)
c

∣∣∣2 (1− ηij) , n∑
j=1

∣∣∣∆jX
(k)
c

∣∣∣2 (1− ηkj )


= Cov∗

 n∑
j=1

∣∣∣∆jX
(i)
c

∣∣∣2 ηij , n∑
j=1

∣∣∣∆jX
(k)
c

∣∣∣2 ηkj


=
(
E∗
[
ηijη

k
j

]
−E∗

[
ηij
]
E∗
[
ηkj
]) n∑

j=1

∣∣∣∆jX
(i)
c

∣∣∣2
 n∑

j=1

∣∣∣∆jX
(k)
c

∣∣∣2


= 0,

(30)

where the last implication follows from the independence of ηij from ηkj when i 6= k. The rest follows as

in Podolskij and Ziggel (2010). �

56



B Quadratic variation measures and implementation

B.1 Kernel and bandwidth selection

Numerical experiments show that the test is more stable when the kernel is smooth, and that the kernel

shape is not crucial. In simulations and empirical work we use a (normalized) Gaussian kernel

K(x) = e−x
2/2.

The bandwidth process is expressed as a function of the local variance, as follows:

Ht,n = hn · σ̂(i)
t

√
T

n
, (31)

where σ̂
(i)
t is a point estimator of σ

(i)
t , obtained as in Corsi et al. (2010). The bandwidth parameter

hn is found by an automated procedure based on simulations. Since we normalize to local variance, we

replicate the null hypothesis by simulating N iid standard Normal variates correlated as in the data (we

use average the average correlation matrix in the sample), and then add a given number M of multi-

jumps (with M < N) of desired size. For each set of replications, we then find hn such that the average

size of of the test, computed on replications, is 5% at 95% confidence intervals. Such a bandwidth should

be used for testing, approximately, for at least M+1 multi-jumps. Figure 9 shows the result for different

N and M . Matlab c© code for automated bandwidth selection, and for the multi-jump test, is available

from our web pages.

We can see that the number of multi-jumps under the null affects the bandwidth, but only slightly; the

effect is stronger when the number of multi-jumps under the null approaches N . A conservative choice

should then be hn = 6.5 (for N = 2) or hn = 4.5 (for N = 16). For all N , the choice hn ' 1 is the less

conservative. For N = 16, the range should then be 1 ≤ hn ≤ 3 depending on which kind of signal one is

interested in. This is actually beneficial to the testing procedure since when a multi-jump occurs some

of the associated jumps might be small, or could happen with a small lag.

Motivated by these results, in Section 5 we use: hn = 6.5 when testing for co-jumps (N = 2); 1.5 ≤ hn ≤ 3

when testing for many multi-jumps in the N = 16 case; hn = 2 (with N = 16) in the regressions with

variance premia, volatility and correlations.

57



Bandwidth Selection rule
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Figure 9: Shows the optimal bandwidth parameter hn obtained by calibrat-
ing the correct size on simulated experiments in which the null hypothesis is
without jumps or contaminated by one jumps, or multi-jump of order 2, 4, 10
and 13, for various values of the number of stocks. The table indicates, for ex-
ample, that the choice with hn ' 6.5(4.5) is the most conservative with N = 2
(N = 16), and hn ' 1 is the less conservative.

B.2 Jump tests

Here we discuss the implementation of the univariate jump tests and the Jacod and Todorov co-jump

test used in the Monte Carlo experiments and in the empirical applications.

We start with univariate test, for which we use three tests: BNS, CPR and ABD. The null hypothesis

for all the three tests is the absence of jumps. The BNS test introduced by Barndorff-Nielsen and

Shephard (2006) is based on the comparison of the realized variance and bipower variation, which are

respectively non-robust and robust to jumps measures of the integrated variance. For a 1-dimensional

process X the BNS test statistic has the following form:

∆−1/2
1− MV(X;[1,1])

RV(X)√
(π/4 + π − 5) max(1, MV(X;[4/3,4/3,4/3])

MV(X;[1,1]) )
⇒ N (0, 1), (32)
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where the convergence in distribution holds under the null,

MV(X; [r1, r2, ..., rm]) =

 m∏
j=1

(µrj )
−1

 (∆)
1− r1+...+rm

2 ·
n−m+1∑
i=1

m∏
j=1

|∆i+jX|rj , (33)

RV(X) = MV(X; [2, 0, ..., 0]). (34)

The CPR test, introduced by Corsi et al. (2010), is similar to BNS, however it uses threshold bipower

variation instead of simple bipower variation. Moreover, the special finite sample correction is applied

to the test statistic in order to improve the size of the test in finite samples. The test statistics has the

following form:

∆−1/2 (RV(X)− C-TMV(X; [1, 1]))RV(X)−1√
(π/4 + π − 5) max

(
1, C-TMV(X;[4/3,4/3,4/3])

C-TMV2(X;[1,1])

) ⇒ N (0, 1), (35)

where the convergence in distribution holds under the null, and C-TMV(X; r) is the corrected version

of threshold multipower estimator. The correction consists in replacing returns ∆jX > Hj by their

expectations under the assumption ∆jX ∼ N (0, σ2
j ):

C-TMV(r) =

 m∏
j=1

(µrj )
−1

 (∆)
1− r1+...+rm

2 ·
n−m+1∑
i=1

m−1∏
j=0

Zr(∆Xi+j , Hi+j), (36)

where the function Zr(x, y) is:

Zr(x, y) =


|x|r if x2 ≤ y

1

2N(−cϑ)
√
π

(
2

c2ϑ
y

) γ
2

Γ

(
r + 1

2
,
c2ϑ
2

)
if x2 > y

(37)

To implement the CPR test we always use the threshold threshold defined according to (31) with the

constant hn = 3.

The ABD test a modification of the Lee and Mykland (2008) test which considers the set of all intraday

standardized returns:

zi = ∆iX/
√
Vi, (38)

where Vi is the estimate of spot volatility at time corresponding to the intraday return number i, i =

1, ..., n. Under the null each zi is asymptotically standard normal. Hence, one can test the absence

of jumps by comparing all standardized intraday returns with the normal critical values. In order to

guarantee that the daily first type error does not exceed a given level α, the size of each intraday test

must be equal to β = 1− (1− α)∆.

59



The alternative co-jump test of Jacod and Todorov (2009) used in Section 4.1 is computed as follows.

For a 2-dimensional function f(x1, x2), define power variation by:

V (f, k∆) =

[n/k]∑
i=1

f(Xik∆ −X(i−1)k∆), (39)

where k ≥ 2 is an integer. Let

f(x1, x2) = (x1x2)2, g1(x1, x2) = (x1)4, g2(x1, x2) = (x2)4, (40)

and consider statistics:

Φjn =
V (f, k∆)

V (f,∆)
, Φdn =

V (f,∆)√
V (g1,∆)V (g2,∆)

. (41)

These two statistics are studied in the subset ΩcT of Ω in which neither X1 nor X2 is purely continuous.

The test thus needs preliminary tests for jumps in the two series to be implemented. Denote by ΩjjT =

ΩNT \ ΩcT , the set of trajectories on which there are idiosyncratic jumps in X1 and X2 but no cojumps.

Jacod and Todorov (2009) show that Φjn
p−→ 1 on Ω

N

T , while Φdn
p−→ 0 on ΩjjT . Hence Φjn is used to test

the null hypothesis of the presence of co-jumps, and Φdn to test the null of absence of co-jumps. The

variance of the tests depend on the covariances of the two series. For detail on constructing the critical

regions and the choice of k, see Jacod and Todorov (2009).

B.3 Quadratic variation measures

In order to measure the continuous covariations among asset prices we use an approach based on the

polarization of bipower variation, as in Barndorff-Nielsen and Shephard (2003), adapted for threshold

bipower variations (Corsi et al., 2010). Let Cov
(i,j)
t denote a measure of continuous quadratic covariation

of two stocks i and j at day t, and V
(i)
t = Cov

(i,i)
t be the measure of continuous integrated variance of

stock i at day t. We first denote, for j = 1, . . . , n by

\∆jX = (∆jX)I{|∆jX|≤θj}

where θj is a threshold computed as in Corsi et al. (2010), and by \X the cumulated price obtained with

truncated returns \∆jX. We then set

Cov
(i,j)
t =

1

4
(BV( \X(i) + \X(j))− BV( \X(i) − \X(j))), (42)
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where

BV( \X) = (µ1)−2

bT/∆c−1∑
j=1

| \∆jX|| \∆j+1X|, (43)

is threshold bipower variation, with µ1 =
√

2/π; Cov
(i,j)
t is a consistent and jump-robust estimator of

the continuous part of the covariation process of the log-price processes X(i) and X(j).

The intraday measure of correlation between two stocks is defined by

Corr
(i,j)
t =

Cov
(i,j)
t√

V
(i)
t V

(j)
t

. (44)

It can be mapped into the whole real line by the use of Fisher transformation

ρ̃
(i,j)
t = log

1 + Corr
(i,j)
t

1− Corr(i,j)
t

, (45)

which is used in regression analysis in Section 5.

C SURE representation and estimation

This section describes the estimation and testing approach adopted in the empirical analyses to verify

the joint significance of multi-jumps coefficients. Given that our purpose is to test restrictions across

equations, a simultaneous equation system must be considered. The most appropriate setting is that of

Seemingly Unrelated Regression Equations (SURE) which reads as



Y1

Y2

...

Ym


=



X1 0 . . . 0

0 X2 . . . 0

...
. . .

...

0 0 . . . Xm





β1

β2

...

βm


+



ε1

ε2
...

εm


, (46)

where Yj is a T−dimensional vector containing the sample data for the j−th dependent variable, Xj is the

T ×Kj matrix of explanatory variables in the j− th equation, while βj is the associated Kj−dimensional

vector of regression coefficients. In addition, the error terms are assumed to be homoskedastic, serially

uncorrelated, not cross-correlated, but are contemporaneously correlated, implying that E [εε′] = Ω⊗ IT ,

Ω being the covariance matrix such that E [εtε
′
t] with εt = [ε1,t, ε2,t, . . . , εm,t]. In our case, the dependent

variable Yj contains either the sample data of the log-realized volatility for one stock, Yj = log V
(i)
t , or
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the sample data for of the Fisher transformation of realized correlations between two stocks, Yj = ρ̃
(i,l)
t .

In the first case m = 16, while in the latter m = 120. Moreover, Xj might contain HAR terms as

well as jump, co-jump and multi-jump indicator variables. Note that, the matrices Xj , j = 1, 2, . . .m

are specific of each dependent variables, and thus of each equation, but include both equation-specific

elements, the HAR terms, jump and co-jump variables, as well as common elements, when the multi-

jump indicator variable is taken into account. The SURE model allows testing cross-equation restrictions

when the errors are contemporaneously correlated. In the present study, we cannot exclude a-priori that

the innovations of different equations are independent.

In a SURE model, GLS estimation is required to take into account the covariance structure of the

innovations. Feasible GLS estimation is normally performed, by first applying OLS on a univariate

basis, then recovering the covariance of innovations from the univariate regression residuals and, finally,

applying GLS with the estimated residuals covariance.

Nevertheless, the use of FGLS requires a diagnostic check on the first stage residuals, given the presence

of lagged dependent variables (the HAR terms) on the explanatory variables Xj , and because the true

unrestricted model is of a V AR−type (the general model is a V ARX(22) whose parameters are highly

restricted in the V AR part). In fact, if the first stage residuals would be serially correlated, this could

lead to biases in the first stage OLS. Those biases might be associated with a correlation between

regressors and innovations. Differently, if first stage residuals show evidences of serial cross-correlations,

those would signal, on the hand, the need of a less restricted HAR component, for instance allowing for

interactions across equations, and on the other hand would lead to biases due to the omitted variable

problem.

In our empirical analyses, diagnostic checks on the first stage residuals show those problems are not a

real concern: in very few cases diagnostic tests lead to a rejection of the null hypotheses, and the first

lags in the autocorrelation and cross correlation functions were showing values at maximum equal to 0.1.

Therefore, we believe those results support the use of FGLS. However, diagnostic tests show evidences

of heteroskedasticity. The latter is taken into account in the estimation of Feasible GLS standard errors

by adopting a White-type correction. We replace the traditional FGLS estimator of the parameter

covariance matrix with the following expression

V [βFGLS ] =
(
X ′
(

Ω̂−1 ⊗ IT
)
X
)−1

S
(
X ′
(

Ω̂−1 ⊗ IT
)
X
)−1

, (47)

where
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S =

T∑
t=1

XtΩ̂
−1εtε

′
tΩ̂
−1X ′t. (48)

and Ω is estimated on the first stage regression residuals. Note that the matrix Xt is block-diagonal

with diagonal elements equal to the column-vector Xj,t; it contains the time t explanatory variables for

equation j.
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