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Abstract

We introduce a new class of adaptive Metropolis algorithms called adaptive sticky algorithms

for efficient general-purpose simulation from a target probability distribution. The transition of the

Metropolis chain is based on a multiple-try scheme and the different proposals are generated by

adaptive nonparametric distributions. Our adaptation strategy uses the interpolation of support

points from the past history of the chain as in the adaptive rejection Metropolis. The algorithm

efficiency is strengthened by a step that controls the evolution of the set of support points. This

extra stage improves the computational cost and accelerates the convergence of the proposal

distribution to the target. Despite the algorithms are presented for univariate target distributions,

we show that they can be easily extended to the multivariate context by a Gibbs sampling strategy.

We show the ergodicity of the proposed algorithms and illustrate their efficiency and effectiveness

through some simulated examples involving target distributions with complex structures.

Keywords: Adaptive Markov chain Monte Carlo, Adaptive rejection Metropolis, Multiple-try

Metropolis, Metropolis within Gibbs.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods (see Liu (2004); Liang et al. (2010); Robert and Casella

(2004) and references therein) are now a very important numerical tool in statistics and in many others

‖Corresponding author: Fabrizio Leisen, fabrizio.leisen@gmail.com. Other contacts: r.casarin@unive.it (Roberto
Casarin); luca.martino@uc3m.es (Luca Martino).
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fields, because they can generate samples from any target distribution available up to a normalizing

constant. The standard MCMC techniques require the specification of a proposal distribution and

produce a Markov chain that converges to the target distribution. A crucial issue in MCMC is the

choice of the proposal distribution, which can heavily affect the mixing of the MCMC chain when the

target distribution has a complex structure, e.g., multimodality and heavy tails. Thus, in the last

decade and after the seminal paper of Haario et al. (2001), a remarkable stream of literature focuses

on adaptive proposal distributions, which allow for self-tuning procedures of the MCMC algorithms,

flexible movements within the sample space and reasonable acceptance rates.

Adaptive MCMC algorithms are used in many statistical applications (e.g., see Roberts and

Rosenthal (2009), Craiu et al. (2009), Giordani and Kohn (2010)) and different adaptive strategies have

been proposed in the literature. One of the strategies consists in updating the proposal distribution

according to the past values of the chain (e.g., see (Haario et al., 2001) and Andrieu and Robert

(2001)). Another strategy relies on the use of auxiliary chains, which are run in parallel and interact

with the principal chain (e.g., see Jasra et al. (2007), Casarin et al. (2013)).

One of the most used class of MCMC algorithms, is the Metropolis-Hastings (MH) algorithm

(see Metropolis et al. (1953) and Hastings (1970)) and its generalizations. Among the different variants

of the MH, in this paper we focus on multiple-try Metropolis (MTM) (see Liu et al. (2000)), which have

revealed to be efficient in different applications (e.g., see Craiu and Lemieux (2007) and So (2006)).

While in the MH formulation one accepts or rejects a single proposed move, the MTM is designed so

that the next state of the chain is selected among multiple proposals. The multiple-proposal setup

can be used effectively to explore the sample space of the target distribution. The MTM has been

further generalized with the use of antithetic and quasi-Monte Carlo sampling (Craiu and Lemieux

(2007) and Bédard et al. (2012)), and the use of general weighting function in the selection step of the

MTM (Martino and Read (2012) and Martino and Read (2013)).

We contribute to the adaptive MCMC literature by proposing a new class of adaptive

generalized Metropolis algorithms. More specifically, we propose adaptive sticky MTM (ASMTM)

which has the adaptive sticky Metropolis (ASM) as a special case. Adaptation strategies for MTM

based on interacting chains have been proposed in Casarin et al. (2013). We follow here an alternative

route and use the past iterations of the MTM algorithm to adapt the proposal distribution over

the chain iterations. The proposal distribution is nonparametric and the construction method relies

upon alternative interpolation strategies. Our adaptation mechanism also builds on and extends the

adaptation mechanism in the adaptive rejection sampling (ARS) (Gilks and Wild, 1992) and in the

accept/reject Metropolis (ARMS) (Gilks et al., 1995b) and its extensions (e.g., see Meyer et al. (2008),
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Cai et al. (2008) and Martino et al. (2012)). We shall notice that the interpolation approach has been

used also in Krzykowski and Mackowiak (2006) and Shao et al. (2013), but not in an adaptive MH

framework. Our extension of the algorithms in the ARMS class is twofold. First we use the more

efficient multiple-proposal transition instead of the single proposal transition kernel. Secondly we

apply a random test procedure for the inclusion of new points in the support set of the proposal

distribution. We discuss different testing procedures for the inclusion of new support points. They

represent more efficient generalizations of the accept/reject rule of the ARMS algorithm.

Another contribution of the paper regards the converge of the proposed adaptive algorithms.

Adaptive MCMC algorithms, which use previous iterations or auxiliary variables in their future

transitions, violate the Markov property which provides the justification for conventional MCMC.

Thus, their validity in terms of convergence to the desired target distribution, has to be demonstrated.

We shall notice that convergence of adaptive MCMC is reached under various conditions (Haario et al.

(2001), Atchade and Rosenthal (2005), Andrieu and Moulines (2006), Roberts and Rosenthal (2007),

Saksman and Vihola (2010), Latuszynski et al. (2013), and Holden et al. (2009)). In this paper we

follow the Holden et al. (2009) approach and show the ergodicity of the adaptive Metropolis chain

under suitable conditions on the proposal distribution. Our interpolation approach guaranties that

the adaptive proposal distributions satisfy such conditions. These results extend to adaptive MTM

algorithm the previous results on adaptive MH due to Holden et al. (2009).

The structure of the paper is as follows. Section 2 introduces adaptive sticky Metropolis

and discusses convergence issues. Section 3 presents different updating schemes for the proposal

distributions. Section 4 discusses some practical issues for the implementation and some acceleration

strategies for reducing the computational cost. Section 5 presents a multivariate extension based on

a Gibbs sampling updating rule. Section 6 contains algorithm comparisons using simulated data.

Section 7 contains conclusions and suggestions for further research.

2 Adaptive Generalized Metropolis

2.1 Adaptive Sticky Metropolis

Let π(x) be a real target distribution known up the normalizing constant. Fix an initial state x0 of

the chain xt, t = 0, 1, 2, . . . , and an initial set of support points S0 = {s1, . . . , sm0}, with m0 > 0.

Assume that the current state of the chain is xt, then the general update of the proposed Adaptive

Sticky Metropolis (ASM) algorithm is described in Algorithm 1.
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Algorithm 1. Adaptive Sticky Metropolis (ASM)

For t = 1, . . . , T :

1. Construction of the proposal: Build a proposal qt(x|St−1) via a suitable interpolation

procedure using the set of support points St−1.

2. MH step:

2.1 Draw x′ from qt(x|St−1).

2.2 Set xt+1 = x′ and z = xt with probability

α(xt, x
′,St−1) = min

[
1,

π(x′)qt(xt|St−1)
π(xt)qt(x′|St−1)

]
,

and set xt+1 = xt and z = x′, with probability 1 − α(xt, x
′,St−1).

3. Test to update St: Let η : R
+ → [0, 1] be a strictly increasing continuous function such that

η(0) = 0. Then, set

St =

⎧⎨⎩ St−1 ∪ {z} with prob. η(dt(z)),

St−1 with prob. 1 − η(dt(z)),

where dt(z) is a positive measure (at the iteration t) of the distance in z between the target and

the proposal distributions.

The proposal distribution changes along the iterations (see step 1 of Algorithm 1) following

an adaptation scheme which relies upon a suitable interpolation of a set of support points. In Section

3 we provide several interpolation methods based on a partition of the support of π(x). The insight

behind this adaptation strategy is to build a proposal that is closer and closer to the target as the

number of iterations increases.

The proposal generated from the updated distribution are then used in a standard accept-

reject Metropolis-Hastings (MH) step (see step 2 of the algorithm), hence the resulting algorithm is

in the class of adaptive MH.

Another important feature of the proposed adaptation strategy is given by the test for

updating the set of support points (see step 3). This step includes with probability η the rejected

proposal from the MH step in the set of support points by applying an accept-reject rule. The ratio

behind this test is to use information from the target distribution in order to include in the set only the

points where the proposal is far from the target. More specifically, we set the acceptance probability

η as a function of a distance dt(z). This allows to design a strategy that incorporates the point z

only if distance in z between the proposal distribution and the target is large. Moreover, a suitable

construction of the proposal leads to a probability of adding a new point that converges to zero. This
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implies that both the total number of points in the support set and the computational cost of building

the proposals are kept bounded along the iterations, provided that η(0) = 0. Different choices of η,

which ensure quick convergence of the proposal to the target, are presented in Section 4.1.

Finally, it should be noted that Algorithm 1 is a special case of the adaptive sticky MTM

presented in the next section (see Algorithm 2) and the proof of the validity of the algorithm follows

closely the proof given in next session for the adaptive sticky MTM and, therefore, it is not given here.

2.2 Adaptive Sticky Multiple Try Metropolis

In the ASM one accepts or rejects a single proposed value. We extend the ASM by allowing for multiple-

proposals in order to further improve the ability of the Metropolis chain to explore the state space.

We focus on the multiple-try Metropolis (MTM) (see Liu et al. (2000) and Craiu and Lemieux (2007))

and propose an Adaptive Sticky MTM (ASMTM). The ASMTM can also be seen as a generalization

of the MTM which allows for adaptive proposal distributions. Note that our adaptation strategy can

be combined with MTM algorithms with different proposal distributions and with interacting MTM

algorithms (see Casarin et al. (2013)) to design new adaptive algorithms. We adaptation can be also

used within the multi-point algorithms (e.g., Martino and Read (2012)) as well.

At the iteration t, the ASMTM builds the proposal distribution qt(x|St−1) (step 1 of

Algorithm 2) using the current set of support points St−1. Let xt = x be the current value of the chain

and x′
j , j = 1, . . . , M , a set of i.i.d. proposals simulated from qt(x|St−1) (see step 2). Moreover, let

wjt(x, x′
j) = π(x)qt(x′

j |St−1)λt(x, x′
j |St−1) be the unnormalized selection weights, where λt(x, x′|St−1)

is a non-negative symmetric function in x and x′. It is worth noticing that in the adaptive MTM

not only the proposal distribution changes over the iterations, but also the function λt may adapt

following the update in the set of support points.
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Algorithm 2. Adaptive Sticky Multiple Try (ASMTM)

For t = 1, . . . , T :

1. Construction of the proposal: Build a proposal qt(x|St−1) via a suitable interpolation

procedure using the set of support points St−1. In Section 3 we provide several procedures

that are based in a partition of the support of π(x).

2. MTM step:

2.1 Draw x′
1, . . . , x

′
M from qt(x|St−1) and compute the weights wt(x′

i) = π(x′
i)

qt(x′
i|St−1)

.

2.2 Select x′ = x′
j among the M proposals with probability proportional to wt(x′

i), i = 1, . . . , M .

2.3 Set the auxiliary point x∗
i = x′

i and zi = x′
i, i �= j and x∗

j = xt

2.4 Set xt+1 = x′ and zj = x∗
j with probability

α(xt, x
′,x′

−j ,St−1) = min
[
1,

wt(x′
1) + · · · + wt(x′

M )
wt(x∗

1) + · · · + wt(x∗
M )

]
,

and set xt+1 = xt and zj = x′
j , with probability 1 − α(xt, x

′,x′
−j ,St−1).

3. Test to update St: Let ηi : R
+ → [0, 1], i = 1, . . . , M , be strictly increasing continuous functions

such that ηi(0) = 0, ∀i and
∑M

i=1 ηi ≤ 1. Then, set

St =

⎧⎨⎩ St−1 ∪ {zi} with prob. ηi(dt(zi)), i = 1, . . . , M

St−1 with prob. 1 −∑M
i=1 ηi(dt(zi)),

where dt(z) is a positive measure (at the iteration t) of the distance in z between the target and

the proposal distributions.

Liu et al. (2000) discussed various possible specifications of the function λt and found in their

experiments that the efficiency gain when using MTM is generally not sensitive to the choice of this

function. However, in some of the experiments of Liu et al. (2000) and in quite all the simulation

experiments of Casarin et al. (2013), the choice λt(x, x′|St−1) = 1/(qt(x|St−1)qt(x′|St−1)) leads to

better performance of the MTM algorithms. Thus, in this work we consider this choice of λt and focus

on wjt(x, x′) = wt(x), ∀j, where wt(x) are unnormalized importance weights

wt(x) =
π(x)

qt(x|St−1)
.

The importance weights are used at the step 2 of the ASMTM to select one of the proposals. The

selected candidate is accepted or rejected with the generalized acceptance probability given at step 2.

Finally, step 3 includes the selected proposal in the set of support points, with probability η. This
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updating step can be extended to allow for more than one proposals to be included into the set of

support points. The strategy leads to recycle the proposals and possibly improves the adaptation of

the proposal distributions. For the sake of simplicity, in the presentation of the ASMTM algorithm,

we consider the case only one proposal is added, at each iteration, to St−1.

We show the convergence of the ASMTM algorithm by extending to the MTM the results

in Holden et al. (2009) where they show the convergence for independent MH scheme with adaptive

proposal avoiding the requirement of diminishing adaptation. The difference between the adaptive

independent MH algorithm of Holden et al. (2009) and a standard independent MH algorithm is that

the proposal distribution qt(x|St−1) depend on the set of support points St−1, which can include part

of the past history of the MH algorithm except for the current state of the MH chain (see Liang et al.

(2010), pp. 312-315). The main difference between our adaptive independent MTM algorithm and

the adaptive independent MH algorithm of Holden et al. (2009) is that the at each iteration multiple-

proposals can be used in the Metropolis transition. The following theorem implies that the AMTM

chain never leaves the stationary distribution π(x) once it is reached.

Theorem 1. The target distribution π(x) is invariant for the adaptive independent MTM algorithm;

that is, pt(xt|St−1) = π(xt) implies pt+1(xt+1|St) = π(xt+1), where pt(·|St−1) denotes the distribution

of xt conditional on the past samples.

Let us assume that the proposal distribution qt(x|St−1) satisfies the strong Doeblin’s condition

qt(x|St−1) ≥ at(St−1)π(x) (1)

for all x ∈ X and St−1 ∈ X t−1, where X denotes the state space, and at(St−1) ∈ (0, 1]. This condition

is satisfied in our proposal distributions discussed in the next sections. The proofs of following theorem

and Theorem 1 are in Appendix A.

Theorem 2. Assume the proposal qt(x|St−1) in the ASMTM algorithm satisfies the condition 1 for

all t. Then

||pt − π||TV ≤ 2
∫
X t

t∏
j=1

(1 − aj(Sj−1))dµ(St−1) (2)

The algorithm converges if the product goes to zero when t → ∞.

3 Construction of sticky proposal functions

There are many alternatives available for the construction of a suitable proposal distribution in the

ASM and ASMTM algorithms. In this section, we focus on certain procedures that approximate the
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target distribution interpolating points that belong to the graph of the (unnormalized) target. The

points are identified by evaluating the target at the support points and the set of support points

change over the algorithm iterations. The name ”sticky”, we choose for this algorithm, highlights the

ability of the adaptation schemes to generate a sequence of proposal distributions which converge to

the target, allowing for a full adaptation of the proposal distribution.

The adaptation relies upon interpolation scheme which are easy to improve by adding new

points to the support set and are easy to sample. We note that the resulting proposal density can

be represented as a mixture of probability density functions, so that to draw from it one need to

compute mixture weights, to sample from a discrete distribution in order to choose one of the mixture

components and finally to be able to draw samples from the selected component.

In this paper, we will present three novel adaptation strategies for the proposal distributions.

Let us assume that a set St = {s1, . . . , smt} of mt support points is available at the iteration t + 1

of a Metropolis algorithm. Define a sequence, of mt + 1 intervals: I0 = (−∞, s1], Ij = (sj , sj+1]

for j = 1, . . . , mt − 1, and Imt = (smt , +∞). In the first type of adaptation schemes, the proposal

distribution is a mixture of mt + 1 densities with bounded disjoint supports Ij , j = 0, . . . , mt. An

addition of a new support point, say s′, can change the shape of the densities associated to the different

intervals. For instance, if s′ ∈ Ik, then the algorithm will update the mixture components associated

with Ik, Ik−1 and Ik+1. This feature of the adaptation scheme has, as a special case, the construction

in Gilks et al. (1995b).

The proposal distribution, in the second type of adaptation schemes, is a mixture of densities

with bounded disjoint supports, like the one used in the first method, but the addition of a new support

point, say s′, can change only one component of the mixture. For instance, if s′ ∈ Ik, then the k-th

density of the mixture will be improved. This proposal updating scheme is a simpler alternative to

Gilks et al. (1995b). In the following sections, we discuss the three adaptation schemes and illustrate

how our sticky proposal construction applies within these schemes.

3.1 Disjoint supports and proposal changes in different intervals

The first adaptation strategy relies upon interpolation for points on the graph of the target. For

the sake of simplicity we describe the interpolation procedure representing the target and proposal

densities in a log-domain. Hence, let us define the log-density functions

Wt+1(x) � log[qt+1(x|St)], V (x) � log[π(x)]. (3)
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where qt+1(x|St) is the proposal at the iteration t + 1 of the Algorithms 1 and 2 and π is the target

distribution. Let us denote as Lj,j+1(x) the straight line passing through the points (sj , V (sj)) and

(sj+1, V (sj+1)) for j = 1, . . . , mt − 1 where sj ∈ St. Also, set

L−1,0(x) = L0,1(x) � L1,2(x), and Lmt,mt+1(x) = Lmt+1,mt+2(x) � Lmt−1,mt(x).

In Gilks et al. (1995b), Wt+1(x) is a piecewise linear function,

Wt+1(x) = max
[
Lj,j+1(x), min [Lj−1,j(x), Lj+1,j+2(x)]

]
, (4)

with x ∈ Ii where Ij = (sj , sj+1], j = 1, . . . , mt − 1 and I0 = (−∞, s1] and Imt = (smt , +∞). The

function Wt+1(x) can be re-written as follows

Wt(x) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

L1,2(x), x ∈ I0;

max {L1,2(x), L2,3(x)} , x ∈ I1;

max {Lj,j+1(x), min {Lj−1,j(x), Lj+1,j+2(x)}} , x ∈ Ij , 2 ≤ j ≤ mt − 2;

max {Lmt−1,mt(x), Lmt−2,mt−1(x)} , x ∈ Imt−1;

Lmt−1,mt(x), x ∈ Imt .

(5)

Eq.(??) and 5 show that the construction of the log-density in a interval Ij depends also on the

points sj−1 and sj+2. Therefore, an addition of a point in a interval can change the construction

in the adjacent regions. For instance, let us assume St = {s1, s2, s3, s4, s5}. Fig. 1(a) illustrate the

construction using the points in the set St. Fig. 1(b) show how the construction change when a new

point is added between the points s1 and s2 of the set St used Fig. 1(a). As illustrated in Fig. 1(b),

intervals I0 = (−∞, s1], I1 = (s1, s2] and I2 = (s2, s3], this construction requires to modify lines

for the intervals I0 and I1 of Fig. 1(a) and to compute the intersection point between two straight

lines (see interval I2 = (s2, s3] of Fig. 1(b)), to be able to draw adequately from the corresponding

proposal distribution. Note that, a similar procedure using pieces of quadratic functions in the log-

domain (namely, pieces of truncated Gaussians density in the pdf domain) also has been proposed in

Meyer et al. (2008).

3.2 Disjoint supports and proposal changes in one interval

Gilks et al. (1995b) introduced for the ARMS algorithm the procedure to build qt+1(x|St+1), described

in the previous section. The computational complexity of the procedure arises from the need to

construct a proposal function above the target in more regions as possible, in order to take advantage

of the rejection sampling step. We note that a simpler approach to build the proposal is to define
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V (x)

W
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(x)

s1 s2 s3 s4 s5

(a) (b)

Figure 1: Examples of piecewise linear function, Wt+1(x), built using the procedure described in Gilks
et al. (1995b) for the set St = {s1, . . . , s5} of support points (graph (a)) and the set of support points
s1, . . . , s6 (graph (b)), obtained by adding a new point between the two points s1 and s2 in St.

V (x)

s1 s3 s5s2 s4

W
t
(x)

(a)

V (x)

s1 s3 s5s2 s4

W
t
(x)

(b)

Figure 2: Examples of the construction of Wt+1(x) using the procedures described in Eq. (6) (graph
(a)) and in Eq. (7) (graph (b)).

Wt+1(x) inside the i-th interval as the straight line passing through (si, V (si)) and (si+1, V (si+1)),

Li,i+1(x), for 1 ≤ i ≤ mt−1, and extending the straight lines corresponding to I1 and Imt−1. Formally,

this can be expressed as

Wt+1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L1,2(x), x ∈ I0 = (−∞, s1];

Li,i+1(x), x ∈ Ii = (si, si+1], 1 ≤ i ≤ mt − 1;

Lmt−1,mt(x), x ∈ Imt = (smt , +∞).

(6)

This construction is illustrated in Fig. 2(a). Although this procedure looks similar to the one

used in ARMS by Gilks et al. (1995b), it is much simpler in fact, since there is not any minimization or

maximization involved, and thus it does not require the calculation of intersection points to determine

when one straight line is above the other. Observe that the proposal qt+1(x|St) = exp{Wt+1(x)}, with

such a definition, is formed by exponential pieces (in the pdf-domain). Moreover, an even simpler

procedure to construct Wt+1(x) can be devised using a piecewise constant approximation with two
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straight lines inside the first and last intervals. Mathematically, it can be expressed as

Wt+1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L1,2(x), x ∈ I0 = (−∞, s1];

max {V (si), V (si+1)} , x ∈ Ii = (si, si+1], 1 ≤ i ≤ mt − 1;

Lmt−1,mt(x), x ∈ Imt = (smt , +∞).

(7)

The construction described above leads to the simplest proposal density, i.e., a collection of uniform

pdfs with two exponential tails. Fig. 2(b) shows an example of the construction of the proposal

using this approach. Note that we can also apply the procedure proposed for adaptive trapezoid

Metropolis sampling (ATRAMS, Cai et al. (2008)) to build the proposal distribution. However, the

structure of the ATRAMS algorithm Cai et al. (2008) is completely different to the ASM and ARMS-

type techniques. In both cases the proposal is constructed in the domain of the target pdf, π(x),

rather than in the domain of the log-pdf, V (x) = log(π(x)). For instance, the basic idea proposed for

ATRAMS is using straight lines, L̃i,i+1(x), passing through the points (si, π(si)) and (si+1, π(si+1))

for i = 1, . . . , mt − 1 and two exponential pieces, E0(x) and Emt(x), for the tails:

qt(x|St) ∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E0(x), x ∈ I0 = (−∞, s1];

L̃i,i+1(x), x ∈ Ii = (si, si+1], i = 1, . . . , mt − 1;

Emt
(x), x ∈ Imt

= (smt
, +∞).

(8)

Unlike in Cai et al. (2008), here the tails E0(x) and Emt(x) do not necessarily have to be equivalent in

the areas they enclose. Note that L̃ denotes a straight line built directly in the domain of π(x), whereas

L denotes the linear function constructed in the log-domain. Indeed, we may follow a much simpler

approach calculating two secant lines L1,2(x) and Lmt−1,mt(x) passing through (s1, V (s1)), (s2, V (s2)),

and (smt−1, V (smt−1)), (smt , V (smt)) respectively, so that the two exponential tails are defined as

E0(x) = exp{L1,2(x)} and Emt(x) = exp{Lmt−1,mt(x)}. Fig. 3 depicts an example of the construction

of qt(x|St) using this last procedure. Note that drawing samples from these trapezoidal pdfs inside

Ii = (si, si+1] can be easily done (Cai et al., 2008; Devroye, 1986). Indeed, given u′, v′ ∼ U([si, si+1])

and w′ ∼ U([0, 1]), then

x′ =

⎧⎪⎨⎪⎩
min{u′, v′}, w′ < π(si)

π(si)+π(si+1) ;

max{u′, v′}, w′ ≥ π(si)
π(si)+π(si+1) ;

(9)

is distributed according to a trapezoidal density defined in the interval Ii = [si, si+1].

For the approximation methods presented in Sections 3.1-3.2 it is possible to show that the

proposal distributions generated by the interpolation algorithm converge to the target distribution

when the number of support points goes to infinity.
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(a) (b)

Figure 3: Example of the construction of the proposal density, qt+1(x|St), using a procedure described
in Cai et al. (2008), within the ATRAMS algorithm, in the pdf domain (graph (a)) and in the log-
domain (graph (b)).

Theorem 3. Consider a continuous bounded target density π(x) with bounded second order derivative.

Denote with π̃ the unormalized density, with x ∈ X , and with {q̃t(x|St−1)}+∞
t=1 a sequence of

possibly unnormalized proposal density functions such that q̃t(x|St−1) > 0 for all x ∈ X . Then,∫
X |q̃t(x|St−1) − π̃(x)|dx −→

t→∞ 0

For sake of simplicity, we denote as q̃t(x|St−1) and π̃(x) the unnormalized density functions

whereas qt(x|St−1) and π(x) indicate the normalized densities. However, we remark that in the rest

of this work we have considered qt(x|St−1) and π(x) as unnormalized pdfs. Therefore, so far the

interpolation (or approximation) was applied to the unnormalized target π̃(x) to deal with the general

case. Hence the proposal function qt(x|St−1) is unnormalized as well. Namely, we build q̃t(x|St−1)

via interpolation using the information of π̃(x). We denote the corresponding normalizing constants

1/ct and 1/cπ, respectively. As the q̃t converges to π̃ in L1 as t goes to infinity, then the normalizing

constants also convergences, i.e. ct converge to cπ. Indeed, denoting as

d(f, g) = ||π̃ − q̃t|| =
∫
X
|f(x) − g(x)|dx,

the L1 distance between f(x) and g(x), we have the following result that is proved in Appendix A

jointly with Theorem 3.

Theorem 4. Let qt(x|St−1) = 1
ct

q̃t(x|St−1) and π(x) = 1
cπ

π̃(x), where cπ = ||π̃|| =
∫
X π̃(x)dx and

ct = ||q̃t|| =
∫
X q̃t(x|St−1)dx. If d(q̃t, π̃) −→

t→∞ 0, then d(qt, π) −→
t→∞ 0

Remark. The adaptation procedures presented in the previous sections build proposal distributions

with exponential tails. However, the construction of the tails can be easily modified if desired by the

user. It is worth to mention that it is not strictly necessary to change the construction of the tails,

but there could be some benefits in handling the tails with different approaches. Specifically, we can
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diminish the dependence from the initial points and also speed up the convergence of the chain when

the target has heavy tails. Furthermore, in a similar fashion, the previous construction procedures

can be modified in order to handle unbounded target distributions as well.

4 Practical implementation

4.1 Updating of the set of support points

In this section, we focus on the update step of Algorithm 1-2 where a test is introduced for controlling

the evolution of the set of support points. This step can be seen as a measure of similarity between

the proposal and target distributions. It is a part of the algorithm that is extremely important since

it controls the trade-off between mixing of the Metropolis chain and computational cost. Indeed, the

use of large number of support points improves the performance but, at the same time, increases

the computational cost. In this step a choice of two functions η and dt is needed. The first one

is a strictly increasing function with values in [0, 1], and dt is a distance between the proposal and

the target distribution. For instance, following the literature on adaptive mixture proposals, one can

choose logistic weights and a local absolute distance between proposal and target, which has a low

computational cost. These choices corresponds to the following specification:

η(dt(z)) =
1

1 + exp {−γ(dt(z) − ε)} , dt(z) = |π(z) − qt(z|St−1)|, (10)

with γ, ε ∈ (0, +∞). In the experiments we will consider two special cases of this rule. The first

one is for γ = 1 and ε = 0 (random updating) and the second one is for γ → +∞ and ε ∈ (0, +∞)

(deterministic updating). In tghe deterministic updating of the set of support point, the function η

takes value 0, if dt(z) > ε and 1 if dt(z) ≤ ε. Through the threshold parameter ε it is possible to

control the number of support points. The parameter can be updated over the iterations following a

deterministic rule to control the computational cost of the algorithm. We left this issue as a matter

of future research.

We investigate also an alternative specification of η and dt, which allows for recycling some of

the outputs of the Metropolis steps of the Algorithm 1. From this perspective a natural choice could

be

η(dt(z)) = dt(z)β, dt(z) = 1 − min{π(z), qt(z|St−1)}
max{π(z), qt(z|St−1)} , (11)

with β ∈ (0, +∞). When β < 1, the incorporation of new points is facilitated w.r.t. the case β = 1

whereas, with β > 1, the growth of St is made more difficult. In our experiments we set β = 1. Note
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that the choice of a linear function for η produces valid weights since dt ∈ [0, 1] As a final remark,

we shall note that this choice of η(dt(z)) resembles the probability of adding a new support point

in the ARS method. Moreover, if qt(z|St−1) ≥ π(z), ∀z ∈ D and ∀t, then η(dt(z)) = 1 − π(z)
qt(z|St−1) ,

that is exactly the probability of incorporating z to the set of support points in the ARS method.

The updating rules presented above for Algorithm 1 require some changes when used in a multiple

proposal algorithm such as Algorithm 2. Let us consider the updating scheme in Eq. (11). Let zi,

i = 1, . . . , M be a set of proposals, then the updating step for St−1 splits in two parts. First, a z is

selected among the proposals, z1, . . . , zM , with probability proportional to

ϕt(zi) = max
{

w(zi),
1

w(zi)

}
=

max{π(zi), qt(zi|St−1)}
min{π(zi), qt(zi|St−1)} , (12)

i = 1, . . . , M . This step selects with high probability a sample at which the proposal value is far from

the target. The second step is a control step, where z is included in the set of support points with

probability dt(z) = 1 − 1
ϕt(z) . This step is similar to the accept-reject step in the ARMS algorithm

and the probability of the point to be included corresponds exactly to the probability of a proposal

to be be accepted in a ARMS algorithm. It can be shown that this two-steps updating procedure

corresponds to the following step of our algorithm

St =

⎧⎪⎨⎪⎩
St−1 ∪ {zi} with prob. ηi(dt(zi)) = ϕt(zi)−1PM

j=1 ϕt(zj)
,

St−1 with prob. MPM
i=1 ϕi(dt(zi))

,

where ϕt(zi) = 1
1−dt(zi)

and dt(zi) = 1 − min{π(zi),qt(zi|St−1)}
max{π(zi),qt(zi|St−1)} .

4.2 Acceleration of the ASMTM

So far, we have presented the general structure of the ASMTM (Section 2) and different procedures

for building the proposal distributions and updating their support set when the number of proposals

is fixed. In our simulation experiments, we found that the ASMTM is sensibly more robust than the

ASM to the specification of the initial set of points. The multiple proposals of the MTM transition

allows to reduce the dependence problem to the initial support points and also allows for a faster

convergence of the proposal distribution to the target. The superior efficiency of the MTM algorithms

over the MH algorithm certainly relies upon the use of multiple proposals which improves the mixing

of the transition kernel and the adaptation of the proposal distribution to the target. The price to pay

for this gain of efficiency is a higher computational cost. Nevertheless we found that the improvement

of the initial set of points benefit of the multiple proposals in a initial transition of the ASMTM chain
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and then reduces. Thus, it is possible to design adaptation strategies for the number of tries, which

reduce the computational cost. For adapting Nt one can consider a decreasing sequence of number of

tries, Nt, t = 1, 2, . . . , T where T is the number of iterations of the Metropolis chain, Nt ∈ 1, . . . , M

with M the maximum number of tries. In order to make the tuning phase not too computationally

expensive, we suggest to fix M not too large. Following our numerical results, for Nt = M ∀t, we

suggest to set M = 10. However, we let the choice and the adaptation of the number of proposals for

future research.

5 ASM within Gibbs sampling

Several MCMC techniques need efficient univariate samplers in order to be applied. A well-known

example is the Gibbs sampling algorithm, which generates samples from a multivariate distribution

by means of sequentially sampling from the full conditionals (Robert and Casella, 2004). Other

remarkable examples are hit-and-run methods (Liang et al., 2010, Chapter 3) and adaptive direction

sampling (Gilks et al., 1995a, Chapter 6). In this section, we focus our attention on the Gibbs

sampler, illustrating the application of the ASM (or ASMTM) within Gibbs sampling. Let π(x) be

a multivariate target probability density function, with x = (x1, . . . , xL)′ ∈ R
L. Let t indicate the

iteration index of the Gibbs chain and j the current component of x being generated. Denote with

πj(xj |x−j,t) = π(xj |x1,t+1, . . . , xj−1,t+1, xj+1,t, . . . , xL,t) the j − th conditional distribution of xj given

x−j,t = (x1,t+1, . . . , xj−1,t+1, xj+1,t, . . . , xL,t). Let x0 = (x1,0, . . . , xL,0)′ be the initial state of the Gibbs

chain at t = 0, then at the iteration t + 1 the Gibbs sampler is described by the following steps:

1. Draw xj,t+1 ∼ π−j(x|x−j,t) for j = 1, . . . , L.

2. Set xt+1 = (x1,t+1, . . . , xL,t+1)′ and t = t + 1. Repeat from step 1.

In order to apply the Gibbs sampler we need to be able to draw from all the L full-conditional

univariate densities, πj(xj |x−j,t) for j = 1, . . . , L. Ideally, we would like to be able to sample directly

from the L full-conditionals or, at least, to be able to use a rejection sampling (or even better, an

adaptive rejection sampler) technique to draw independent samples. However, in general this is not

the case and a MCMC technique has to be usually employed within the Gibbs sampler. Moreover, to

improve the convergence of the Gibbs, several iterations, say K, of the chain are run and only the last

sample is used. This call for the use of efficient MCMC method within the Gibbs sampler.
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Algorithm 3. ASM-within-Gibbs

1. Start with x0 = [x1,0, . . . , xL,0]T and set t = 0.

2. Draw xj,t+1 ∼ π−j(x|x−j,t), for j = 1, . . . , L, using the ASM method:

2.a Initialize the set of support points, S(j)
t,0 , and the starting value, x1, of the ASM chain.

2.b For k = 1, . . . , K:

i. Build the proposal q
(j)
t,k (x|S(j)

t,k−1) and draw x′ ∼ q
(j)
t,k (x|S(j)

t,k−1).

ii. Accept xk+1 = x′ with probability

α = min

[
1,

πj(x′|x−j,t)q
(j)
t,k (xk|S(j)

t,k−1)

πj(xk|x−j,t)q
(j)
t,k (x′|S(j)

t,k−1)

]
.

Otherwise, set xk = xk−1.

iii. Update the set S(j)
t,k = S(j)

t,k−1 ∪ {x′}, or not (i.e., let S(j)
t,k = S(j)

t,k−1), according to a

suitable control test (see Section 4.1).

2.c Set xj,t+1 = xK .

3. Set xt+1 = (x1,t+1, . . . , xL,t+1)′ and t = t + 1. Repeat from step 1.

We propose to use ASM within the Gibbs sampler. The steps of the ASM-within-Gibbs are

given in Alg. 3, where k = 1, . . . , K denotes the iteration index for the ASM algorithm. The efficiency

of our ASM and ASMTM algorithm allow for choosing relatively small value of K, say between 10

and 40, in order to achieve good performance of the Gibbs sampler.

Regarding the set of support points, it should be restarted each time the target changes both

for ASM and ASMTM, exactly as in the ARMS method. The initial support points are the parameters

of the ARMS, ASM and ASMTM algorithms and the choice of these parameters can play a crucial

role in the validity of the algorithm and in the behaviour of the MCMC chain. More specifically, the

following conditions on the initial set are required (see (Gilks et al., 1997)) for the validity of the

ARMS-within-Gibbs algorithm. For all j = 1, . . . , L and t = 1, . . . , T :

1. Each S(j)
t,0 does not contain the current state xj,t.

2. Each S(j)
t,0 does not depend on the previous set of the same component, i.e., S(j)

t−1,K .

These two conditions apply to the ASM-within-Gibbs approach. However, for instance, initializing

with the same set of initial support points S(j)
t,0 = S(j)

0 , ∀t, j, does not jeopardize the validity of the

ASM-within-Gibbs algorithm. Furthermore, according to our simulation experiments reported in the

following section, the ARMS is extremely sensitive to the choice of the initial set. Our ASM and
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ASMTM algorithms are instead robust with respect this choice. Thus, a naive initialization strategy

which use the same initial points at each Gibbs iteration can be used.

6 Simulations

6.1 Gaussian mixtures

We study the ability of different algorithms to simulate from multimodal distributions which are locally

not log-concave. More specifically we assume the target distribution is the following mixture of two

Gaussian distributions

0.5N (7, 1) + 0.5N (−7, 0.1).

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2. This corresponds to

an example with multiple modes so separated that ordinary MCMC methods fail to visit one of the

modes. We design to set of experiments in order to compare the standard ARMS and the our proposed

ASM and ASMTM algorithms, combined with the proposal distributions given in Section 2. In a first

set of experiments we study the performance of the algorithms for a given proposal distribution. In

the second set of experiments we compare different proposal distributions for a given algorithm. In the

two set of experiments we use the same function η(dt(x)) given in Eq. (11), for the inclusion of a point

in the set of support points. We apply different construction methods for the proposal distribution

and indicate with:

• 1: the construction proposed by Gilks et al. (1995b) for the ARMS (see Eq (4)), which is formed

by exponential pieces (see Fig. 1).

• 2: the construction with exponential pieces, or straight lines in the log-domain (see Eq. (6) and

Fig. 2(a)).

• 3: the construction with uniform pieces (see Eq. (7) and Fig. 2(b)).

• 4: the construction with linear pieces in the density domain (see Eq (8) and Fig. 3).

For testing the performance of the algorithms, we run each algorithm 2, 000 times using the

same starting values and the same initial set of support points, i.e. S0 = {−10,−8, 5, 10}. For each run

we iterate T = 5, 000 times the Metropolis chains. Thus, the results given in Tab. 1 are averages over

2, 000 experiments and refer to T = 5, 000 iterations without removing of the initial burn-in sample.

Within each class of algorithms, ARMS, ASM and ASMTM, the proposal distributions 1

and 2 have higher mean square errors (MSE) and autocorrelation (ACF) (see also MSE and ACF
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panels in Fig. 4) with respect to the proposal distributions 3 and 4. The high value of the MSE is

due to the difficulty of the Metropolis chain to explore the two modes of the mixture of distributions.

Given the initial support points, the proposal distributions 1 and 2 have low density regions between

these points with respect constructions 3 and 4. The proposal 3 is the one, among the fours, that

has the highest density value between the support points. This feature favours the exploration of

the space and the addition of new points to the support set. Comparing the performance of the first

and second proposal distribution we finally remark that the first distribution is overperforming the

second one (see MSE panel in Fig. 4) only in the ARMS algorithm. The intuition behind this result

is that the first construction approach (see Fig. 1) is specifically designed (see Gilks et al. (1995b)) to

generate distributions which stay above the target, while the second adaptation procedure allows for

proposal graph which are not necessarily above the graph of the target allowing for more flexibility in

the exploration of the space. The better mixing properties of distributions 3 and 4 are evident from

the estimated autocorrelation functions (see ACF panel in Fig. 4). The absence of full adaptation

of the proposal to the target results from the lower acceptance rate given in panel ACC of Fig. 5.

Proposals 3 and 4 do not differ substantially, in terms of MSE (see Table 1 and MSE panel in Fig. 4)

and autocorrelation, ACF(k), at the lags k = 1, 10, 50 (see ACF panel in Fig. 4), while they exhibit a

different number of support points (see NSP panel in Fig. 5). For all algorithms proposal distribution

3 requires a larger set of support points. This is confirmed by the number of support points at the

last iteration (see mT in Table 1). Note that in the calculation of the number of support points for

the ARMS construction we include the intersection points of the interpolation lines. Independently on

the choice of the proposal adaptation, ASM and ASMTM algorithms overperform, in terms of ACF

and MSE, the ARMS. Also, for the proposal distributions 1 and 2, the ASM and ASMTM algorithms

are able to improve the poor performances of the such proposals combined within a ARMS algorithm.

Moreover, increasing the number of ASMTM proposals, from N = 10 to N = 50, one obtains a further

improvement of the MSE and ACF with a increase of the computational cost of the 167%. Note that

the number of iterations of the ARMS is slightly higher than the number of iterations of the ASM

and ASMTM. This is due to some rejected samples in the accept/reject step of the ARMS.

The best performance, in terms of MSE, is achieved by the ASMTM with N = 50 proposals,

irrespectively on the choice of the proposal distribution. The lowest MSE is achieved by the ASMTM

with proposal distribution 3 and 4. It is the most efficient, with a low autocorrelation level, and the

one with the highest number of points in the support set (see number of points at the last iteration,

mT ). However, in this example and for the ASMTM with N = 10, the large number of support

points of constructions 3 and 4 is not affecting the computing time, which is substantially equivalent
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Figure 4: Mean square error (MSE) over the Metropolis chain iterations and Autocorrelation Function
(ACF) at lags from 1 to 100. In each plot: construction 1 (solid line), construction 2 (dashed-dotted
line), construction 3 (dotted line) and construction 4 (dashed line).
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iterations. In each plot: construction 1 (solid line), construction 2 (dashed-dotted line), construction
3 (dotted line) and construction 4 (dashed line).
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to the one of the ASMTM with proposal distributions 1 and 2, while improving the adaptation of the

proposal distribution to the target. The full adaptation of the ASMTM with proposal 3 and 4 is clear

from the estimated acceptance rate given in panel ACC of Fig. 5. The rate converges to one after a

few iterations. From our experiments the ASMTM with N = 50 proposals is quite efficient but usually

has a higher computational cost. Adding more points to the support set increases the adaptation of

the proposal to the target, thus improving the acceptance rate but also implies an increase in the

computational cost for constructing the proposal distribution. In order to reduce the computing time,

without loosing in efficiency, one can use the acceleration mechanisms described in Section 4 or the

procedure for the inclusion of support points to reduce the number of points and the time required by

the construction of the proposal distribution.

In this section, we study the effects on time and efficiency of the procedure for the inclusion

of the proposal in the set of support points. We show how the parameter of the test to update the

support set can be used to control the trade-off between computing time and proposal distribution

efficiency. For the sake of brevity, we report the results of such a simulation study, only for the ASM

algorithm using the four proposal construction methods described above in this section. We compare

the random test procedure given in Eq. (11) with the deterministic test procedure given as a limiting

case of Eq. (10) when γ → +∞. The random test procedures has no parameter to tune, while the

deterministic test requires the setting of the parameter ε. This parameter allows for controlling the

adaptation level and the efficiency of the proposal. The comparison is done in terms of number of

support points, acceptance rate, mean square error and autocorrelation function.

In all construction methods, the deterministic test to update St−1 is more parsimonious, in

terms of number of support points, than the random test procedure (see Fig. 10 in Appendix A). The

proposal construction method number 4 is the most efficient within the four methods. The efficiency

can be evaluated as follows. For all values of ε, at the 5,000 iteration, the MSE and the ACF are both

close to zero, while the number of support points in the deterministic test case is smaller than those

in the random test case (see Fig. 10 in Appendix A). This means that the same statistical efficiency

of the adaptive proposal distribution case can be achieved at a smaller computational effort with a

deterministic test procedure. In Fig. 6, we provide an estimate of the relationship between number of

support points (NSP in the left chart), acceptance rates (ACC in the right chart) and the parameter

ε of the deterministic test for the inclusion of new points in the support set. Both the NSP and the

ACC are evaluated at the 5,000-th iteration of the ASM, assuming alternatively proposal construction

methods from 1 to 4. We find that the deterministic test (curved lines) has lower NSP with respect

to the random test (horizontal lines). Note that the horizontal lines correspond to the values given in
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Figure 6: The logarithm of the number of support points (NSP) and the acceptance rate (ACC), at
the 5,000-th iteration of the ASM algorithm, for different values of the deterministic test parameter
ε and for construction 1 (solid line), construction 2 (dashed-dotted line), construction 3 (dotted line)
and construction 4 (dashed line). Horizontal lines indicate the result of the ASM with a random test
for inclusion of new points.

the ASM panels of Fig. 5. The deterministic test may lead to a partial adaptation of the proposal

(see the acceptance rates below one) when compared to the the random test, but it allows to achieve

the same level of autocorrelation and thus has the same efficiency of the random test. Moreover,

increasing ε, from 0.005 to 0.2, the NSP and the ACC decreases exponentially fast. The lower bound

for the NSP is log(4) and corresponds to the case of no updates of the initial set of support points

(S0 = {−10,−8, 5, 10}). For all values of ε the ranking of the algorithms does not change. The results

bring us to conclude that, in the ASM implementation, the construction method 3 is the less efficient

in terms of number of support points while the construction method 4 is the most efficient.

6.2 Generalized Gaussian mixtures

In order to corroborate our simulation results, we compare the algorithms on a mixture model with

well separated modes and with heavy tail components. More specifically we consider the following

mixtures of generalized exponential power (GEP) distributions:

1) mixture of heavy- and normal-tail symmetric distributions (Mix1)

0.6GEP(0, 1, 1/2, 1) + 0.4GEP(50, 1, 2, 1),

2) mixture of heavy- and normal-tail asymmetric distributions (Mix2(κ)), κ = 0.01, 0.1, 0.4,

0.4GEP(0, 1, 1/2, 2) + 0.6GEP(50, 1, 1/2, κ),

where GEP(µ, σ2, α, κ) denotes a GEP distribution with location, scale, shape and asymmetry

parameters µ, σ, α and κ, respectively. The density of the GEP distribution is

π(x) =
α

σΓ(1/α)
κ

1 + κ2
exp
{
−κα

σα

(
(x − µ)+

)α− 1
σακα

(
(x − µ)−

)α}
, (13)
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where Γ(z) is the complete gamma function, x+ is equal to x if x ≥ 0 and 0 otherwise and x+ is equal

to −x if x ≤ 0 and 0 otherwise. The shape parameter α controls the tails of the density function

and determines if it is flat or peaked. The parameter κ is an inverse scale factor (see Fernandez et al.

(1995) and Fernandez and Steel (1998)) which controls the asymmetry of the distribution. When

α = 2 (and κ = 1) we have the (symmetric) Gaussian distribution, when α = 1 (and κ = 1) we

have the (symmetric) Laplacian or double exponential distribution and when α → 1 then we have

the uniform distribution. Finally smaller value of α correspond to heavy tailed distribution and when

α → 0 we have the Dirac mass centred at µ. The GEP distribution has the exponential power (EP)

distribution as special case for κ = 1. The EP is also known as the generalized normal or generalized

error distribution popularized by Box and Tiao (1964). It has been used successfully in many fields (see

Kotz et al. (2001) for a review) thanks to its shape flexibility which allows for modelling deviations from

the Gaussian distribution. In the recent years, mixtures of EP distributions have received increasing

attention (e.g., see Elguebaly and Bouguila (2012)) as flexible models for robust data clustering.

We report the results of the ARMS-1 (Gilks et al. (1995b)), ASM-4 with random test and

ASMTM-4 with random test and N = 10. We generate 5,000 draws from each algorithm and compute,

without removing the burn-in sample, the mean, the autocorrelation function, the number of support

points at the last iteration and the computing time. As in the previous section, in order to have an

accurate algorithm comparison, each quantity is the result of an average over 2,000 independent runs

of each algorithm. We start all algorithms with the same initial value and set of support points. We

study the sensitivity of the algorithm performances to the choice of the initial support points and run

three sets of experiments with S0 = {−1, 1, 20}, S0 = {−1, 1, 70} and S0 with three random points

drawn independently from the uniform distribution U([−70, 70]). For comparison purposes we also

report the results of the slice sampling algorithm (see Neal (2003)) implemented in MATLAB (see

the statistical toolbox documentation of The-MathWorks (2013)). The results of these experiments

are given in panel I of Tab. 2. As a reference for comparing the performances of the algorithms

we shall recall that the true mean of the mixture given above is 20. In panel (I.a) one can see that

the performance of the algorithms, in terms of estimated mean, is similar. Nevertheless, the level of

autocorrelation of the ARMS-1 is higher than the one of the ASM and ASMTM. Note that ASM-4 and

ASMTM-4 (N = 10) is more efficient and more time consuming than the ASM-4. Note however that

acceleration techniques (see Section 4.2) can be applied to reduce the computational cost of the MTM

transition. The best efficiency of the ASMTM-4 also affects the standard deviation (column SD) of

the mean estimates. The SD is about 6 for the slice, 10 for the ARMS-1, 3 for the ASM-4 and 0.5 for

the ASMTM-4. The results also show the superiority of the ASMTM-4 to the slice sampling (in the
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Figure 7: Density of the Mix1 and Mix2 mixtures of exponential power distributions (solid line)
and histograms of 5,000 samples from the Mix1 distribution generated with ARMS-1, ASM-4 and
ASMTM-4 (N = 10) assuming S0 = {−1, 1, 20}.

implementation available from the Matlab toolbox). From panel (I.b) one can see that the ARMS of

Gilks et al. (1995b) is sensitive to the choice of the initial set of support points. A bad choice of the

points lead to bad estimates of the mean and to higher ACF values. Panel II of Tab. 2 show the results

for Mix2 for different values of κ (panel II.a-c) given the same initial set of support points. The results

confirm the inferior mixing of the ARMS chain and the lack of convergence of the slice. Fig. 7 exhibits

the densities of the Mix1 and Mix2 distributions and their histogram approximations generated in one

of the experiments by the ARMS, ASM and ASMTM algorithms. A graphical inspection reveals that

the ARMS-1 has difficulties in exploring the tails of the target in the case of a bad choice of the initial

set of points. The randomization of the initial support points across the 2,000 experiments allow us to

account in the algorithm comparison for the problem of the sensitivity to the initial set. The results in

panel (I.c) are averages over experiment outcomes with different initial sets of three random support

points. They show that the ASM and AMTM are more efficient than the ARMS and the slice sampler.

6.3 Makeham’s and Gompertz’s distributions

We consider an example where simulation from the target is challenging due to the potential absence

of log-concavity, the presence of skewness and heavy tails in the density. We apply our simulation
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algorithms to one of the most known distribution in actuarial mathematics, that is the Makeham’s

distribution, which is used for modelling the future lifetime of individuals (see Bowers et al. (1986)).

In many applications to life insurance, the analytical calculation of the expected value of transform

of the Makeham’s random variable is difficult and numerical integration techniques are applied. The

numerical computation can be even more burdensome for higher moments or tail probabilities. This

issues call for the use of Monte Carlo simulation techniques.

Let X be the random age at death for a new born life and T (x) the future lifetime of an

individual with life age x. Then the survival function of the individual is

P (T (x) > z) =
P (X > x + z)

P (X > z)
.

It can be shown (see Bowers et al. (1986)) that under the Makeham’s mortality law the density of the

future life time T (x) is

π(z) = exp
(
−Az − BCx

log(C)
(Cz − 1)

)
(A + BCx+z)I[0,+∞)(z), (14)

with parameters A > −B, B > 0, C ≥ 1 and x ≥ 0. This distribution has another well known

distribution, i.e. the Gompertz’s distribution, as a special case for A = 0. Note that while the

Gompertz’s distribution is log-concave the Makehm’s one may be not log-concave. If A ≤ 0 then

it is log-concave, if A > 0, which is the case in many actuarial applications, then the Makeham’s

distribution is not log-concave. A simulation algorithm based on the the Gilks et al. (1995b) ARMS

has been proposed in Scollnik (1995). In this paper some example of pricing of the life contingent

functions defining annuities or insurances are considered. We compare the ARMS with our ASM

and AMTM algorithms on three pricing examples (see Scollnik (1995)), that are: the expected future

life time, a life insurance with benefit payable at the moment of death and a continuous whole life

annuity. In the first example we approximate the distribution of the residual life time of an individual

with age x = 50, T (50), assuming the following parameter setting of the Makeham’s distribution

A = 0.001, B = 0.0000070848535, C = 1.1194379. In the second and third example we approximate

the distribution of the random present value of the benefit Z = exp{−δT (50)} and of the annuities

Y =
∫ T (50)

0
exp{−δs}ds,

respectively. In the comparison we set the interest rate δ = log(1.025) and consider ARMS-1, ASM-4

with random test, ASMTM-4 with random test and N = 10. We generate 5,000 draws from each
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Metropolis algorithms and compute, without removing the burn-in sample, mean, standard deviation,

skewness, kurtosis and 95% quantile of the distribution of interest. In order to have an accurate

algorithm comparison, each quantity is the result of an average over 2,000 independent runs of each

Metropolis algorithm. We shall notice that the estimates given in Scollnik (1995) are based on 250,000

iterations of the ARMS-1. The choose instead 5,000 iterations to show the higher efficiency of our

ASM-4 and ASMTM-4 algorithms with respect to the ARMS-1. We start all algorithms with the same

initial value and set of support points. We run two set of experiments with two different initial sets,

that are S0 = {20, 40, 60} and S0 = {0, 20, 40, 60}, with the aim to compare the Gilks et al. (1995b)

ARMS-1 algorithm and our ASM and ASMTM algorithm also in terms of sensitivity to the initial set

of points.

The results of the first set are given in panel (a) of Tab. 3 while the results of the second

set are summarized in panel (b) of the same table. As a reference for comparing the performance of

the algorithms we consider the results of a deterministic integration algorithm reported in Scollnik

(1995). The panel (a) shows the difficulty of the ARMS-1 algorithm to provide good estimate of the

quantities of interest. The positive skewness and large kurtosis values for the random variable T (50)

indicate that the ARMS-1 algorithm is not approximating well the tails of the distribution of T (50).

As an example we exhibit in Fig. 11 the histograms generated by each algorithm in one of the 2,000

experiments for the three variables T (50), Z and Y . One can see in the upper-left chart of the figure

that the ARMS-1 is not generating value in the left tail of the distribution. A similar problem occurs

for the right tail in the mid-left and bottom-left chart of the same figure. Last three lines of panel (a)

indicates that the ARMS-1 has a higher autocorrelation at the lags 1, 10 and 50 than the ASM-4 and

ASMTM-4. This result confirms the better mixing of our adaptive algorithms.

In the second set of experiments (see panel (b) of Tab. 3) the initial set S0 = {0, 20, 40, 60}
includes the left bound of the support of the target distribution, which is defined on the [0, +∞)

interval. In these experiments, the ARMS-1 gives better results than in the first set. The efficiency is

comparable to the one of the ASM-4 and ARMS-4. These results confirm the dependence problem of

the ARMS-1 on the initial set of support points. We conclude that, in our experiments, our ASM-4

and ASMTM-4 algorithms overperform the ARMS-1 irrespectively on the initial set of support points,

which confirms the superior mixing of these algorithms, already proved in the experiments of the

previous section.
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6.4 Stochastic volatility

The accept/reject Metropolis algorithm is usually employed within a Gibbs algorithm as a general

simulation method for full conditional distributions which are not easy to simulate from. A class of

models where this usually happens is stochastic volatility (SV) models (e.g., see Jacquier et al. (1994),

Jacquier et al. (2004) and Geweke (1994)). In this example we consider the univariate SV model with

leverage due to Jacquier et al. (2004)

yt =
√

htεt, (15)

log ht = α + δ log ht−1 + ηt, (16)

with ⎛⎝ εt

ηt

⎞⎠ i.i.d.∼ N2

⎛⎝⎛⎝ 0

0

⎞⎠ ,

⎛⎝ 1 ψ

ψ ψ2 + ω

⎞⎠⎞⎠ .

See Jacquier et al. (2004) for prior specification on the intercept, α, persistence, φ, and volatility, ψ

and ω, parameters. The full conditional distribution of ht is known up to a normalizing constant, i.e.

p(ht|ht−1, ht+1) ∝ h

“
− 3

2
− δψyt+1

ω exp{ht+1/2}
”

t exp
{
− y2

t

2ht

(
1 +

ψ2

ω

)}
· (17)

· exp
{
−(1 + δ2)

(log ht − µt)2

2ω
+

ψyt(log ht − α − δ log ht−1)
ω
√

ht

}
.

where µt = (α(1 − δ) + δ(log ht+1 + log ht−1))/(1 + δ2). In the experiments we set yt = 0.001,

ht+1 = ht−1 = α, α = −0.356, δ = 0.95, ψ = −0.15 and ω = 0.043, which is in line with the empirical

results of Jacquier et al. (2004). We compare our ASM and ASMTM algorithms, with the Gilks et al.

(1995b)’s ARMS and one of the MH algorithms used in Jacquier et al. (2004), which is an independent

MH with an inverse gamma proposal distribution. Thus the proposal of the MH is ht ∼ IG(φt, θt),

with parameters

φt =
ψδyt+1

ω
√

ht+1

− 0.5 +
1 − 2 exp{ω/(1 + δ2)}
1 − exp{ω/(1 + δ2)} − 1,

and

θt =
y2

t

2

(
1 +

ψ2

ω

)
+
(

1 − 2 exp{ω/(1 + δ2)}
1 − exp{ω/(1 + δ2)} − 1

)
exp
(
µt + 0.5ω/(1 + δ2)

)
.

The adaptive proposal distributions of our ASM and ASMTM are obtained with the construction

method give in Eq (8) (see also Fig. 3). Both ASM and ASMTM use a random test for inclusion of

the points in the set and support points. The initial support points are the same across the algorithms

and the experiments, that is S0 = {0.0001, 0.001, 0.005, 1} in the first set of experiments (Tab. 4,

27



Histograms

ARMS-1 ASM-4 ASMTM-4

MCMC chain iterations

ARMS-1 ASM-4 ASMTM-4

Figure 8: Results of 5,000 samples generated with ARMS-1, ASM-4 and ASMTM-4 (N = 10) for the
log-volatility full conditional distribution assuming S0 = {0.0001, 0.0003, 0.005, 1}. Top: log-density of
the target (solid line) and MCMC empirical log-density (histogram). Bottom: output of the MCMC
iterations.

panel (a)), and S0 = {0.0001, 0.0003, 0.005, 1} in the second set (Tab. 4, panel (b)). The results

in Tab. 4 show that our ASM and ASMTM chains exhibit a lower autocorrelation at the first lag

with respect to the MH chain. Nevertheless after looking at the mean and at the ACF at the other

lags one could conclude in favour of a substantial equivalence of the algorithms in terms of efficiency.

Thus, we shall stress that our approach to the design of the Metropolis proposal distribution is for

general simulation purposes, since it does not require the intervention of the researcher and provides

an efficient automatic adaptation of the proposal to the target. The MH considered here uses instead

a proposal which has been specifically designed by the researcher for the SV model (see Jacquier et al.

(2004)). Another result, that we found also in the previous examples, is the sensitivity of the ARMS-1

(Gilks et al. (1995b)) to the choice of the initial set of support points. The choice of the initial set can

affect negatively the mixing of the ARMS-1 chain and its ability to visit the domain of the distribution

(see ACF in the panel (b)). The bad mixing of the ARMS chain is also confirmed by the raw output of

the chain iterations (see bottom charts of Fig. 8). The histograms in Fig. 8 also show that the ARMS

proposal is not able to generate candidates in the high probability density region and the rejected

points are not useful for improving the proposal distribution. The mixing of the ASM and ASMTM
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chains is better and, as we found in all our experiments, the ASM and ASMTM algorithms are less

sensitive than the ARMS to the choice of the initial support points.

7 Conclusions

We propose new adaptive sticky MTM algorithms (ASMTM) for all-purposes stochastic simulation.

Different interpolation strategies for the construction of the adaptive nonparametric distributions

are discussed. We have been able to prove the ergodicity of the ASMTM algorithm, thus extending

previous results in the literature and using conditions which are automatically satisfied by our proposal

distributions. Our simulation experiments show the best efficiency of the proposed ASMTM algorithms

over traditional adaptive rejection Metropolis (ARMS). We found that the performance of the ARMS

depend crucially on the choice of the initial support points, whereas our ASMTM is robust with respect

to this choice. Moreover, the multiple-mode and heavy-tail target examples show that the ASMTM, as

opposed to the ARMS, is efficient in exploring the sample space. The simulation experiments show that

the proposal construction methods with uniform pieces and the one with linear pieces in the density

domain are the most efficient. The role of the control step for the inclusion of new support points has

been investigated. We found that this step is quite effective for controlling the computational cost

and the efficiency of the ASMTM when a large number of proposals is used.

8 Acknowledgment

This work has been partly financed by the Spanish government, through the DEIPRO project

(TEC2009-14504-C02-01), the CONSOLIDER-INGENIO 2010 Program (Project CSD2008-00010).

Roberto Casarin’s research is supported by the Italian Ministry of Education, University and Research

(MIUR), through PRIN 2010-11 grant and by the European Union, Seventh Framework Programme

FP7/2007-2013 under grant agreement SYRTO-SSH-2012-320270. Fabrizio Leisen’s research is

partially supported by grant ECO2011-25706 of the Spanish Ministry of Science and Innovation.
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Cahiers de Mathématiques du Ceremade; Université Paris-Dauphine.
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A Proofs

Proof of Theorem 1: Let ρ be the state appended to the history St−1. Without loss of generality,

suppose that ηj = 1 where j is the index sampled at the selection step, then St = ρ ∪ St−1 with

ρ = zj . Moreover, let ft(St) be the joint distribution of the history St and let qt,−j(x′
−j |St−1) =∏

i�=j qt(x′
i|St−1) where x′

−j = (x′
1, . . . , x

′
j−1, x

′
j+1, . . . , xM ). Following Liu et al. (2000), Theorem

1 and Casarin et al. (2013) Theorem 1, the actual transition probability of the MTM step in our

ASMTM writes as follows:

A(ρ, xt+1) =
∫
J

hMt(dJ)
∫
XM

qt,−J(x′
−J |St−1)dx′

−Jqt(x′
J |St−1)∫

XM+1

δρ(dx∗
J)δxt+1(dx′

J)
∏
k �=J

δx′
k
(dx∗

k) min

[
1,

∑
i�=j wt(x′

i) + wt(x′
J)∑

i�=j wt(x∗
i ) + wt(x∗

J)

]

=
M∑

j=1

∫
XM−1

qt,−j(x′
−j |St−1)dx′

−jα(ρ, xt+1, x
′
−j ,St−1)

wt(xt+1)qt(xt+1|St−1)∑
k �=j wt(x′

k) + wt(xt+1)
,

where J = {1, . . . , M} and hMt(dJ) =
∑M

j=1

wt(x′
j)PM

k=1 wt(x′
k)

δj(dJ) is the empirical measure generated by

the selection step. We show that the chain with this transition probability never leaves the stationary

π distribution once it is reached:

pt+1(xt+1|St)ft(St) = ft−1(St−1)
M∑

j=1

{∫
XM−1

π(ρ)qt(xt+1|St−1)
wt(xt+1)∑

i�=j wt(x′
i) + wt(xt+1)

×

× α(ρ, xt+1,x
′
−j ,St−1)qt,−j(x′

−j |St−1)dx′
−j +

∫
XM−1

π(xt+1)qt(ρ|St−1)
wt(ρ)∑

i�=j wt(x′
i) + wt(ρ)

×

× [1 − α(xt+1, ρ,x′
−j ,St−1)]qt,−j(x′

−j |St−1)dx′
−j

}
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= ft−1(St−1)
M∑

j=1

{∫
XM−1

π(xt+1)qt(ρ|St−1)
wt(ρ)∑

i�=j wt(x′
i) + wt(ρ)

× qt,−j(x′
−j |St−1)dx′

−j

}

= π(xt+1)ft−1(St−1)qt(ρ|St−1)gt(ρ|St−1),

where

gt(ρ|St−1) = M

∫
XM−1

wt(ρ)∑
i�=j wt(x′

i) + wt(ρ)
qt,−j(x′

−j |St−1)dx′
−j ,

and this concludes the proof.

Proof of Theorem 2: Let xt be the current value of the chain at the iteration t and x′ the j-th proposal

accepted if ut < αj(xt, x
′
j ,x

′
−j ,St−1), where ut is a uniform number on the [0, 1] interval. The

acceptance probability αj(xt, x
′
j ,x

′
−j ,St−1) satisfies

min

⎧⎪⎨⎪⎩1,

∑
k �=j

π(x′
k)

qt(x′
k|St−1)

+
π(x′

j)

qt(x′
j |St−1)∑

k �=j
π(x′

k)

qt(x′
k|St−1)

+ π(xt)
qt(xt|St−1)

⎫⎪⎬⎪⎭ > min

⎧⎨⎩1,
at(St−1)

M

⎛⎝∑
k �=j

π(x′
k)

qt(x′
k|St−1)

+
π(x′

j)
qt(x′

j |St−1)

⎞⎠⎫⎬⎭
= min

{
1,

π(x′
j)

qt(x′
j |St−1)

ãt(St−1,x′)

}
,

where

ãt(St−1,x′) =
at(St−1)

M

∑
k �=j

π(x′
k)

qt(x′
k|St−1)

+
π(x′

j)

qt(x′
j |St−1)

π(x′
j)

qt(x′
j |St−1)

.

Then let At be the condition that utqt(x′|St−1)/π(x′) ≤ ãt(St−1,x′). Then the conditional distribution

of x′ given St−1, xt and At is proportional to

M∑
j=1

∫
XM−1

wt(x′)∑
i�=j wt(x′

i) + wt(x′)
P (At|St−1, x

′,x−j , xt)qt,−j(x′
−j |St−1)dx′

−jqt(x′|St−1) =

=
M∑

j=1

∫
XM−1

wt(x′)∑
i�=j wt(x′

i) + wt(x′)
P

(
ut ≤ π(x′)

qt(x′|St−1)
ãt(St−1,x′)

)
× qt(x′|St−1)qt,−j(x′

−j |St−1)dx′
−j

=
M∑

j=1

∫
XM−1

at(St−1)
M

π(x′)qt,−j(x′
−j |St−1)dx′

−j = at(St−1)π(x′).

Following Holden et al. (2009) we define

It+1 =

⎧⎨⎩ 0 with probability 1 − at+1(St) if It = 0,

1 otherwise,

for t ≥ 1, with I0 = 0, and the probability not to be in the stationary after j step is P (It = 0|St−1) =

bt(St−1) where bt(St−1) =
∏t

j=1(1 − aj(Sj−1)). Then conditional distribution of xt+1 can be written
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as pt(x|St) = π(x)(1− bt(St−1))+ vt(x|St)bt(St), where vt is a probability distribution. Then the total

variation distance between the limiting distribution and the marginal distribution of xt+1, that is

||pt − π||TV =
∫
X
|pt(x) − π(x)| dµ(x)

can be bounded as follows

||pt − π||TV =
∫
X

∣∣∣∣∫X t

pt(x|St)pt(St)dµ(St) − π(x)
∣∣∣∣ dµ(x)

=
∫
X

∣∣∣∣∫X t

(vt(x|St) − π(x))bt(St−1)pt(St)dµ(St)
∣∣∣∣ dµ(x)

≤
∫
X t

∫
X
|vt(x|St) − π(x)| dµ(x)bt(St−1)pt(St)dµ(St) ≤ 2

∫
X t

bt(St−1)pt(St)dµ(St).

Thanks to this bound, the probability to jump in the stationary within t steps, can be made arbitrarily

close to one.

Proof of Theorem 3: Let us consider a set of support points, St−1 = {s1, . . . , smt−1}, with s1 <

. . . < smt−1 , at time step t. Note that, by using any of the procedures described in Section 3,

the corresponding proposal density function, q̃t(x|St−1), is a bounded function, since π(x) is bounded.

Moreover, since
∫
X π̃(x)dx < +∞ and

∫
X q̃t(x|St−1)dx < +∞, then the L1-distance between q̃t(x|St−1)

and π̃(x) is bounded for any t, i.e.,
∫
X |q̃t(x|St−1)− π̃(x)|dx < +∞. Let us consider the finite interval

I = [s1, smt ], then all the interpolation methods proposed in Section 3 to build qt(x|St−1) can be

represented as a Taylor approximation of the order zero or one inside each interval. Hence, the

discrepancy between q̃t(x|St−1) and π̃(x) over I can be bounded as follows

∫
I
|q̃t(x|St−1) − π̃(x)|dx ≤

mt−1−1∑
i=1

∫
Ii

|q̃t(x|St−1) − π̃(x)|dx =
mt−1−1∑

i=1

∫
Ii

|r(i)
� (x)|dx, (18)

where r
(i)
� (x) is the remainder associated to the �-th order (with � ∈ {0, 1} in our case) polynomial

approximation of π(x) inside the interval Ii, as given by Taylor’s theorem. Let us recall that the

Lagrange form of this remainder is r
(i)
� (x) = (x−si)

�+1

(�+1)!
d�+1π̃(x)

dx�+1

∣∣∣
x=ξ

, for a value ξ ∈ [si, x]. Moreover,

since x ∈ Ii = [si, si+1], it is straightforward to show that

|r(i)
� (x)| ≤ (si+1 − si)�+1

(� + 1)!
C

(i)
� , (19)

where C
(i)
� = maxx∈Ii |π̃�+1)(x)|, and π̃�+1)(x) denotes the (� + 1)-th derivative of π̃(x), i.e.,
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π̃�+1)(x) = d�+1π̃(x)
dx�+1 . Hence, replacing (19) in (18), we obtain

mt−1∑
i=1

∫
Ii

|r(i)
� (x)|dx ≤

mt−1∑
i=1

(si+1 − si)�+2

(� + 2)!
C

(i)
� . (20)

Now, let us assume that a new point, s′ ∈ Ik = [sk, sk+1] for 1 ≤ k ≤ mt − 1, is added at the

next iteration. In this case, the construction of the proposal density changes only on the interval

Ik. Assume that Ik is split into I(1) = [sk, s
′] and I(2) = [s′, sk+1], i.e., Ik = I(1) ∪ I(2), then

maxx∈I(j) |π̃�+1)(x)| ≤ maxx∈Ik
|π̃�+1)(x)| with j ∈ {1, 2}, and (s′ − sk)�+2 + (sk+1 − s′)�+2 <

(si+1 − si)�+2, for any � ≥ 0, since A�+2 + B�+2 < (A + B)�+2 for any A, B > 0 thanks to Newton’s

binomial theorem, and we have A = s′ − sk > 0 and B = sk+1 − s′ > 0. Hence, the bound in

Eq. (20) always decreases when a new support point is incorporated and we can finally ensure that

limt→+∞
∑mt−1

i=1

∫
Ii
|r(i)

� (x)|dx = 0, since support points become arbitrarily close as t → ∞ (i.e.,

si+1 − si → 0), and thus the bound in the right hand side of (20) tends to zero as t → ∞. Hence,

we can guarantee that
∫
I |q̃t(x|St−1) − π̃(x)|dx → 0 for t → +∞. Note that we cannot guarantee a

monotonic decrease of the distance between q̃t(x|St−1) and π̃(x) inside I, since adding a new support

point might occasionally lead to an increase in the discrepancy. However, we can guarantee that

the upper bound on this distance decreases monotonically, thus ensuring that q̃t(x|St−1) → π̃(x) as

t → ∞, i.e., adding support points will eventually take us arbitrarily close to π̃(x). Finally, w.r.t. the

tails, note that the distance between q̃t and π remains bounded even for heavy tailed distributions.

Furthermore, the interval I will become greater as t → +∞, since there is always a non-null probability

of adding new support points inside the tails. Therefore, the probability mass associated to the tails

decreases monotonically as t → ∞. Hence, even though the distance between the target and the

proposal may again increase occasionally due the introduction of a new support point in the tails, we

can guarantee such a distance goes to zero as t goes to infinity.

Proof of Theorem 4: Let us denote D̃t = d(q̃t, π̃) and Dt = d(qt, π). We can use an extended triangle

inequality of type d(A, E) ≤ d(A, B)+d(B, C)+d(C, E), using the points A = qt, B = 1
ct

q̃t, C = 1
cπ

q̃t

and E = π, i.e.,

Dt = d(qt, π) ≤ d

(
qt,

1
ct

q̃t

)
+ d

(
1
ct

q̃t,
1
cπ

q̃t

)
+ d

(
1
cπ

q̃t, π

)
≤ d

(
qt,

1
ct

q̃t

)
+ d

(
1
ct

q̃t,
1
cπ

q̃t

)
+ d

(
1
cπ

q̃t,
1
cπ

π̃

)
≤ 0 +

∣∣∣∣∣ 1ct
ct − 1

cπ
ct

∣∣∣∣∣+ 1
cπ

D̃t,

Hence, setting Ct =
∣∣∣1 − ct

cπ

∣∣∣ we can finally write Ct + 1
cπ

D̃t ≥ Dt. Since Dt ≥ 0, if limt→∞ Ct = 0
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and limt→∞ D̃t = 0 then limt→∞ Dt = 0 as well. Therefore, now we just need to prove ct → cπ

when limt→∞ D̃t = 0. Clearly, |π̃(x) − q̃t(x|St−1)| ≥ |π̃(x)| − |q̃t(x|St−1)| = π̃(x) − q̃t(x|St−1) since

π̃(x), q̃t(x|St−1) ≥ 0. The equality is given if π̃(x) ≥ q̃t(x|St−1), so that |π̃(x) − q̃t(x|St−1)| =

|π̃(x)| − |q̃t(x|St−1)|. Moreover, using again the triangle inequality, we can also write

||π̃|| = ||(π̃ − q̃t) + q̃t|| ≤ ||π̃ − q̃t|| + ||q̃t|| ⇒ ||π̃|| − ||q̃t|| ≤ ||π̃ − q̃t||,

and in a similar fashion − (||π̃|| − ||q̃t||) ≤ ||π̃ − q̃t||. Combining the two previous inequalities, we

obtain ||π̃ − q̃t|| ≥
∣∣∣||π̃|| − ||q̃t||

∣∣∣. Since D̃t = d(π̃, q̃) = ||π̃ − q̃t|| and cπ = ||π̃||, ct = ||q̃t||, we can

finally rewrite this expression as D̃t ≥ |cπ − ct|. The expression above is also called reverse triangle

inequality. Then, if limt→∞ D̃t = 0, we also have limt→∞ |cπ − ct| = 0, i.e., ct → cπ for t → ∞ and

Ct =
∣∣1 − ct

cπ

∣∣→ 0.

B Limitations of the ARMS

In the ARMS algorithm, when a sample x′ is rejected by the RS test (this can only happen when

qt(x′) > π(x′)), this point x′ is added to the set St to update the proposal qt+1. On the other hand,

when a sample is initially accepted by the RS test (it could happen with qt+1(x′) > π(x′) and always

happens if qt+1(x′) ≤ π(x′)), the ARMS method uses the MH acceptance rule to determine whether

the new state is finally accepted or not. However, the proposal the proposal is never updated in this

case. Its performance depends on the following two issues:

a) Wt+1(x) should be constructed in such a way that Wt(x) ≥ V (x) for most intervals, and covering

as much of the domain D as possible. In this case, the adaptive procedure of the ARMS method

allows the proposal to improve almost everywhere. Indeed, in the extreme (positive) case that

qt+1(x|St) ≥ π(x) ∀x ∈ D and ∀t ∈ N, the ARMS technique is reduced to the standard ARS

algorithm (using the construction in Eq. (4)).

b) The addition of a support point within an interval must entail an improvement of the proposal

pdf inside other neighbouring intervals when building Wt+1(x). This allows that the proposal

pdf can be improved even inside regions where qt+1(x|St) < π(x). For instance, in the procedure

described in Eq. (4), when a support point is added inside Ij , the proposal pdf also changes in

the intervals Ij−1 and Ij+1. Consequently, the drawback of not adding support points within

the intervals where qt+1(x|St) < π(x) is reduced, but may not completely eliminated, as we show

below.
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Therefore, the convergence of the proposal qt+1(x|St) to the target pdf π(x) cannot be

guaranteed regardless of the construction used for Wt(x), except for the special case where Wt(x) ≥
V (x) ∀x ∈ D and ∀t ∈ N, and the ARMS method becomes the standard ARS algorithm. This is owing

to this fundamental structural limitation, caused by not adding support points inside regions where

qt+1(x|St) < π(x) at some time t. For instance, it is possible that inside some region C ⊂ D, where

qt+1(x|St) < π(x), we obtain a sequence of proposals qt+1+τ (x) = qt+1(x|St) for an arbitrarily large

value of τ . Furthermore, we could have an even more critical situation, where qt+1+τ (x) = qt+1(x|St)

∀x ∈ C and ∀τ ∈ N, i.e., the proposal pdf does not change within an interval C ⊂ D.

V (x)

W
t
(x)

s1 s3 s4 s5s2

(a) (b) (c)

V (x)

s2 s3

(d)

Figure 9: Example of a critical structural limitation in the adaptive procedure of ARMS. (a)
Construction of Wt(x) with 5 support points. Within I2 = (s2, s3] we have Wt(x) < V (x). (b)-(c)
Adding new support points inside the contiguous intervals the construction of Wt(x) does not vary
within I2 (I3 in Figure (c)). (d) The secant line L2,3(x) passing through (s2, V (s2)) and (s3, V (s3)),
and the two tangent lines to V (x) at s2 and s3, respectively.

These limitations of the ARMS adaptation scheme can be illustrated with a simple graphical

example. Consider a multi-modal target density, π(x) = exp(V (x)), with V (x) as shown in Figure

9(a). We build Wt(x) using 5 support points and the procedure in Eq. (4). Note that we

have Wt(x) < V (x) for all x in the interval I2 = (s2, s3], as shown in Figure 9(a), where the

dashed line depicts the tangent line to V (x) at s3. From Eq. (4), the construction of Wt(x)

within this interval is Wt(x) = max
{
L2,3(x), min {L1,2(x), L3,4(x)}}. From Figure 9(a), we see that
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min {L1,2(x), L3,4(x)} = L3,4(x) and max{L2,3(x), L3,4(x)} = L2,3(x) ∀x ∈ I2 = (s2, s3]. Therefore,

Wt(x) = L2,3(x) inside this interval, and this situation does not change when new support points are

added inside the contiguous intervals. Figures 9(b) and 9(c) show that we can incorporate new support

points, s4 in Figure 9(b) and s2 in Figure 9(c), arbitrarily close to the interval I3, I2 in Figures 9(a)-

(b), without altering the construction of Wt(x) within this interval. Indeed, consider now the limit

case where two points are incorporated arbitrarily close to s2 and s3. In this extreme situation, the

secant lines of the adjacent intervals become tangent lines, as shown in Figure 9(d), and the minimum

between the two tangent lines is represented by the straight line tangent to s3. Moreover, this tangent

line stays always below the secant line, L2,3(x), passing through (s2, V (s2)) and (s3, V (s3)), meaning

that Wt(x) = L2,3(x) even in this case.

C Tables and additional figures

Alg. MSE ACF(1) ACF(10) ACF(50) mT Time EI
ARMS-1 10.0395 0.4076 0.3250 0.2328 118.1912 1.0000 5057.833
ARMS-2 15.6756 0.8955 0.7210 0.4639 7.6126 0.1195 5003.612
ARMS-3 0.2398 0.8753 0.4410 0.0296 131.3360 0.3589 5127.336
ARMS-4 0.2874 0.8882 0.4758 0.0418 42.8872 0.2291 5038.887
ASM-1 3.0277 0.1284 0.1099 0.0934 152.6301 1.2274 5000
ASM-2 2.9952 0.1306 0.1125 0.0929 71.1478 0.2757 5000
ASM-3 0.0290 0.0535 0.0165 0.0077 279.6570 0.6494 5000
ASM-4 0.0354 0.0354 0.0195 0.0086 84.8742 0.3297 5000
ASMTM-1 (N = 10) 0.6720 0.0726 0.0696 0.0624 159.0060 2.3547 5000
ASMTM-1 (N = 50) 0.1666 0.0430 0.0395 0.0316 160.7579 6.4518 5000
ASMTM-2 (N = 10) 0.5632 0.0588 0.0525 0.0443 72.1628 1.1291 5000
ASMTM-2 (N = 50) 0.1156 0.0345 0.0303 0.0231 72.5270 4.3802 5000
ASMTM-3 (N = 10) 0.0105 0.0045 0.0001 0.0001 315.7808 2.6022 5000
ASMTM-3 (N = 50) 0.0099 0.0063 0.0001 0.0001 360.7323 10.5935 5000
ASMTM-4 (N = 10) 0.0108 0.0036 0.0011 0.0014 92.6660 1.8618 5000
ASMTM-4 (N = 50) 0.0098 0.0001 0.0001 0.0001 101.7775 7.2475 5000

Table 1: For each algorithm (Alg.), the table shows in different columns, the mean square error (MSE), the

autocorrelation function (ACF(k)) at different lags, k = 1, 10, 50, the number of support points at the last iteration

(mT ), the ratio between the algorithm and the ARMS-1 computing times (Time), and the effective number of iterations

(EI). The class of ASMTM algorithms have been analyzed for two different choices of number of proposals, i.e. N = 10

and N = 50.
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Figure 10: Number of support points (NSP) and acceptance rate (ACC) over the ASM chain iterations for different
constructions. In each plot the results of the ASM with random test (line without symbol) is compared with the results
of a deterministic test with ε = 0.005 (square), ε = 0.01 (cross), ε = 0.1 (triangle) and ε = 0.2 (circle).
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Panel I
(a) S0 = {−1, 1, 20} and T = 5000

Alg. Mean SD ACF(1) ACF(10) ACF(50) mT cT c̄T Time
Slice 19.5039 6.0238 0.8759 0.8230 0.6244 - 0.9934 1.0089 0.8257
ARMS-1 20.2803 10.3538 0.8593 0.8112 0.6848 42.5690 0.7417 1.7490 1.0000
ASM-4 19.1416 2.7723 0.1182 0.0951 0.0785 112.7360 0.9933 1.0085 0.4679
ASMTM-4 19.9408 0.4342 0.0108 0.0054 0.0006 117.0665 0.9938 1.0083 3.0578

(b) S0 = {−1, 1, 70} and T = 5000
Alg. Mean SD ACF(1) ACF(10) ACF(50) mT cT c̄T Time
Slice 19.5039 6.0238 0.8759 0.8230 0.6244 - 0.9934 1.0089 1.0687
ARMS-1 0.3292 10.5940 0.2650 0.1597 0.1266 30.2585 0.4330 4.0560 1.0000
ASM-4 19.1196 2.4849 0.1081 0.0846 0.0689 111.9015 0.9934 1.0084 0.6174
ASMTM-4 19.9120 0.4483 0.0126 0.0066 0.0014 115.6575 0.9938 1.0083 3.9497

(c) S0 with points drawn from U([−70, 70]) (m0 = 3) and T = 5000
Alg. Mean SD ACF(1) ACF(10) ACF(50) mT cT c̄T Time
Slice 19.5039 6.0238 0.8759 0.8230 0.6244 - 0.9934 1.0089 1.7232
ARMS-1 19.6855 4.9838 0.8802 0.7644 0.4837 12.1335 0.9223 1.0927 1.0000
ASM-4 18.7981 3.0211 0.1281 0.1072 0.0908 118.5636 0.9925 1.0085 0.9731
ASMTM-4 19.9276 0.4945 0.0145 0.0087 0.0033 128.1860 0.9937 1.0084 8.2425

Panel II
(a) κ = 0.1, S0 = {−1, 1, 20} and T = 5000

Alg. Mean SD ACF(1) ACF(10) ACF(50) mT cT c̄T Time
Slice 53.0797 14.5540 0.6835 0.3562 0.2666 - 0.9563 1.3878 0.6670
ARMS-1 61.1859 3.4341 0.0625 0.0219 0.0079 59.3500 0.7651 1.6203 1.0000
ASM-4 61.9253 1.6282 0.0283 0.0015 0.0005 121.1240 0.9575 1.1836 0.4344
ASMTM-4 61.9885 1.3193 0.0014 0.0003 0.0001 127.6415 0.9582 1.1966 2.5667

(b) κ = 0.4, S0 = {−1, 1, 20} and T = 5000
Slice 33.4459 4.6767 0.6933 0.5131 0.2230 - 0.9895 1.0113 0.4557
ARMS-1 33.9293 1.0835 0.1451 0.0375 0.0047 57.7728 0.9622 1.0394 1.0000
ASM-4 33.8768 0.7482 0.0247 0.0013 0.0007 131.7785 0.9896 1.0112 0.5212
ASMTM-4 33.9096 0.5660 0.0028 0.0003 -0.0002 137.9935 0.9897 1.0111 2.7921

(c) κ = 0.01, S0 = {−1, 1, 20} and T = 5000
Slice - - - - - - - - -
ARMS-1 272.4381 45.4137 0.3977 0.2410 0.1403 55.3359 0.5753 7.6209 1.0000
ASM-4 384.9001 14.7383 0.0622 0.0051 -0.0002 114.2115 0.7663 3.1612 0.5537
ASMTM-4 385.5778 11.2497 0.0101 0.0005 0.0001 119.6660 0.7816 3.2146 2.8134

Table 2: Results of the slice sampler (Slice), ARMS with construction 1 (ARMS-1), ASM with construction 4 (ASM-4)
and ASMTM with construction 4 (ASMTM-4), with N = 10 proposals, for the target Mix1 (panel I) and Mix2 (panel
II), for different initial set of suppport points (panels (I.a), (I.b) and (I.c)) and for different values of the parameter κ
(panels (II.a), (II.b) and (II.c)). Each row of a panel, shows in different columns, the mean (Mean), the mean estimate
standard deviation (SD), the autocorrelation function (ACF(k)) at different lags, k = 1, 10, 50, the number of support
points at the last iteration (mT ), the estimates of the normalizing constant (cT , c̄T ) at the last iteration, and the ratio
between the algorithm and the ARMS-1 computing times (Time).
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(a) (b)
Quantity DI ARMS-1 ASM-4 ASMTM-4 DI ARMS-1 ASM-4 ASMTM-4
of Interest

T (50)
E(T (50)) 30.8112 29.8411 30.7904 30.7968 30.8112 30.8123 30.7921 30.7995

- (8.1242) (0.1501) (0.1498) - (0.1475) (0.1482) (0.1518)
V(T (50)) 108.8711 66.3152 109.342 109.1356 108.8711 108.961 109.1785 108.9996
Sk(T (50)) -0.6091 1.0629 -0.6138 -0.6102 -0.6091 -0.6104 -0.6112 -0.6102
Ku(T (50)) 2.9668 73.7041 2.9772 2.9702 2.9668 2.9718 2.9718 2.9693

Q0.95(T (50)) - 45.3989 41.6797 45.3917 45.3974 45.3989 45.4032 45.3947 45.3896
ACF(1) - 0.2388 0.0108 0.0023 - -0.0005 0.0069 0.0000
ACF(10) - 0.1701 0.0000 0.0000 - -0.0003 0.0007 0.0000
ACF(50) - 0.0892 0.0000 0.0000 - 0.0000 0.0000 0.0000

Z

E(Z) 0.4838 0.4997 0.4842 0.4841 0.4838 0.4839 0.4842 0.4840
- (0.1268) (0.0020) (0.0020) - (0.0019) (0.0019) (0.0020)

V(Z) 0.0185 0.0092 0.0187 0.0186 0.0185 0.0185 0.0186 0.0186
Sk(Z) 1.2600 -0.4848 1.2682 1.2626 1.26 1.2629 1.264 1.2619
Ku(Z) 4.5066 68.7498 4.5376 4.518 4.5066 4.5211 4.5227 4.5155

Q0.95(Z) 0.77004 0.6689 0.7714 0.7707 0.77004 0.77 0.7709 0.7706
ACF(1) - 0.2834 0.0143 0.0036 - -0.0005 0.0069 0.0000
ACF(10) - 0.2007 0.0000 0.0000 - -0.0003 0.0007 0.0000
ACF(50) - 0.1057 0.0000 0.0000 - 0.0000 0.0000 0.0000

Y

E(Y ) 20.9016 20.2615 20.8881 20.8928 20.9016 20.9014 20.8902 20.8951
- (7.3888) (0.0318) (0.0319) - (0.0786) (0.0785) (0.0800)

V(Y ) 30.36526 15.023 30.5973 30.4875 30.36526 30.4107 30.5147 30.4377
Sk(Y ) -1.2600 0.4848 -1.2682 -1.2626 -1.26 -1.2629 -1.264 -1.2619
Ku(Y ) 4.5066 68.7498 4.5376 4.518 4.5066 4.5211 4.5227 4.5155

Q0.95(Y ) 27.29774 25.1935 27.2952 27.2971 27.29774 27.299 27.2962 27.2945
ACF(1) - 0.2834 0.0143 0.0036 - -0.0005 0.0069 0.0000
ACF(10) - 0.2007 0.0000 0.0000 - -0.0003 0.0007 0.0000
ACF(50) - 0.1057 0.0000 0.0000 - 0.0000 0.0000 0.0000

Table 3: Results for deterministic integration (DI) and stochastic integration with 5,000 iterations of the ARMS with
construction 1 (ARMS-1), ASM with construction 4 (ASM-4) and ASMTM with construction 4 (ASMTM-4), with N = 10
proposals. In all algorithms the initial set of support points is S0 = {20, 40, 60} (panel a) and S0 = {0, 20, 40, 60} (panel
b). The Monte Carlo standard errors, of the sample mean given above, are reported in parenthesis. The autocorrelation
at the k-lag (ACF (k)), k = 1, 10, 50, is given in the last three rows.
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(a) S0 = {0.0001, 0.001, 0.005, 1} and T = 5000
Alg. Mean ACF(1) ACF(10) ACF(50) mT EI
MH 6.3885 10−4 0.0566 -8.5215 10−5 -2.3288 10−4 - 5000

(1.4710 10−6)
ARMS-1 6.3887 10−4 0.0011 -5.6182 10−4 8.0548 10−5 51.1515 5047.15

(1.3652 10−6)
ASM-4 6.3939 10−4 0.0286 -6.5102 10−5 -1.2774 10−4 55.7780 5000

(1.4635 10−6)
ASMTM-4 N = 10 6.3886 10−4 -0.0013 -3.0372 10−4 -6.4483 10−4 61.2585 5000

(1.4071 10−6)
(b) S0 = {0.0001, 0.0003, 0.005, 1} and T = 5000

Alg. Mean ACF(1) ACF(10) ACF(50) mT EI
MH 6.3885 10−4 0.0566 -8.5215 10−5 -2.3288 10−4 - 5000

(1.4710 10−6)
ARMS-1 6.3153 10−4 0.9865 0.9289 0.7461 14.0170 5010.01

(3.3260 10−5)
ASM-4 6.3920 10−4 0.0177 1.7499 10−5 2.0126 10−4 55.6900 5000

(1.4404 10−6)
ASMTM-4 N = 10 6.3883 10−4 -4.5178 10−4 -5.0299 10−4 -5.2821 10−4 60.5280 5000

(1.4120 10−6)

Table 4: Results for different initial set of support points (panels (a) and (b)) and different algorithms: MH, ARMS,
ASM and ASMTM. In columns: the mean (Mean), the autocorrelation function (ACF(k)) at different lags, k = 1, 10, 50,
the number of support points at the last iteration (mT ), and the effective number of iterations (EI). In parenthesis the
standard deviation of the estimated mean.
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Figure 11: Makeham’s density of parameters A = 0.001, B = 0.0000070848535, C = 1.1194379 (solid line) and
histograms of 5,000 samples from the Makeham’s distribution generated with ARMS-1, ASM-4 and ASMTM-4 (N = 10).
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