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Abstract

This paper investigates the causal relationships between real money and real activity. Whereas

previous literature has mainly focused on simple-sum aggregates, we instead use Divisia ones, thus

avoiding the so-called Barnett Critique. Standard Granger non-causality tests are implemented in

two different frameworks: Fully Modified VAR’s (Phillips, 1995) and surplus-lag VARX models

(Bauer and Maynard, 2012). These two environments allow modeling mixtures of I(0)/I(1)

variables with possible cointegration without pretesting for integration nor for the dimension of

the cointegration space. Moreover the latter method is also robust to various other forms of

persistence such as local-to-unity processes, long memory/fractional integration, or unmodeled

breaks-in-mean in the causal variables. By implementing the tests on different sub-samples

identified by standard structural break tests, and using three different measures of money (DM4,

DM4- and DM3), the tests suggest a unidirectional causality from activity to money. Moreover,

from one period to another, the whole causal structure of the systems seem to change, as well as

the stationarity of the series. At last, the two methodologies return similar results.



1 Introduction

Economists have long been interested in the role of money in the economy, especially regarding its

role as a leading indicator for future activity. Following the early works of Sims (1972, 1980), most

researchers have focused on non-causality tests à la Granger (1969) in Vector Auto-Regressions

(VAR). Among many others, Hayo (1999) and Walsh (2003) survey this vast literature, both

emphasizing the contradictory results found by many researchers, showing that it is not possible

to draw clear conclusions about the role of money in the economy. A similar conclusion was

previously reached by Stock and Watson (1989), noticing that “Researchers using only slightly

different specifications have reached disconcertingly different conclusions”.

In this paper, we argue that such instability of results may have at least two distinct sources:

i) Measurement errors in monetary aggregates due to inappropriate aggregation methods and,

ii) Two-stage inference in econometric models.

Concerning the former point, as suggested in a number of seminal publications (Barnett, 1980;

Barnett, Offenbacher and Spindt, 1981, 1984; Barnett and Serletis, 2000), there exists an internal

inconsistency between the microeconomics used to model the private sector, and the aggregator

functions used to compute monetary aggregates by central banks. As a corollary, simple-sum ag-

gregates, computed by central banks, are likely to return flawed measures of money, being based

on the unrealistic assumption of perfect substitutability of assets. This critique, known as the

Barnett Critique, defined by Chrystal and MacDonald (1994), strongly affects the results given by

macroeconomic models, implying that outcomes of studies using simple-sum aggregates are mis-

leading. Belongia (1996) has investigated the empirical validity of this Critique by reexamining

several studies on money, replacing the flawed simple-sum measures with theoretically-consistent

ones. He shows that the original conclusions are then deeply altered. Theoretically-consistent

measures of money have been used in a number of studies such as Barnett, Fisher and Serletis

(1992), Chrystal and MacDonald (1994) who study the relationship between money and GDP,

Schunk (2001) focusing on the predictive content of money, Serletis (1991) and Serletis and King

(1993) or Yue and Fluri (1991). Other recent works also include Darrata et al. (2005), Bar-

nett, Chauvet and Tierney (2009), Belongia and Ireland (2012a, 2012b) or Rahman and Serletis

(2012).

Concerning the latter point, classical tests of non-causality rely on pre-tests (first-stage in-

ference) on the persistence of the series. For instance, if all series are stationary, a simple VAR

in levels is estimated, whereas if the series are integrated but not cointegrated, a VAR in first
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differences is used. If additionally, cointegration is present, then a Vector Error Correcting

Model (VECM) is estimated (Toda and Phillips 1993, 1994). This simple example emphasizes

a general method consisting of: i) Trying to identify the correct underlying Data Generating

Process (DGP) according to pre-tests for stationarity/cointegration (first-stage inference), and

ii) Testing for non-causality in the estimated DGP (second-stage inference). Nevertheless, in

empirical work, due to lack of power of stationarity tests, estimating the “true”DGP may be

diffi cult, as well as differentiating between the different kind of persistence as local-to unity

processes, (Phillips, 1987; Chan, 1988), or long memory/fractional integration; a problem that

deeply worsens if structural breaks are present (Diebold and Inoue, 2001). Hence, inappropriate

persistence modelling, and thus inaccurate DGP identification may lead to incorrect inference

and cascading errors in non-causality tests.

The goal of the paper is to study the causal relationships between real money and activity by

taking into account the two above points. To avoid the Barnett Critique, we use theoretically-

consistent measures of money, i.e. Divisia indices. Concerning the econometric models, we follow

Bauer and Maynard (2012), suggesting agnostic approaches to the form of persistence, that is

suggesting tests that are robust to the various forms of persistence, without any pre-testing. In

causality testing, to our knowledge, two approaches can be used, i) The Fully-Modified VAR

(FM-VAR) of Phillips (1995), extending the Fully Modified ordinary least square of Phillips

and Hansen (1990), ii) The surplus-lag VARX model of Bauer and Maynard (2012), based on

Toda and Yamamoto (1995), Dolado and Lütkepohl (1996) or Saikkonen and Lütkepohl (1996).

Whereas the FM-VAR is designed to model a mixture of I(0)/I(1) variables with possible but

undefined cointegration, the Bauer and Maynard (2012) surplus-lag VARX approach possesses

basically the same features, but goes further. Indeed, the causality test remains robust, when

the causal variable has long memory/fractional integration, can be modeled as a local-to-unity

process, or contains a certain amount of unmodeled breaks in mean. In this latter case, the

noncausality test is interpreted as a co-breaking test.

The main results of the paper are twofold: i) Using three different Divisia monetary aggre-

gates, tests support an unilateral causality from real activity to real money, ii) Over the different

sub-periods, the whole causal structure of the systems, as well as the long term relationships

seem to change.

This paper is organized as follows. Section two focuses on monetary aggregation and presents

the theoretically consistent Divisia aggregates. Section three introduces the econometric method-

ologies. In Section 4, we first test for structural breaks on the growth rates of the series, and
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then implement non-causality tests on different sub-periods. At last Section 5 concludes and

discusses the results.

2 The theoretical approach to monetary aggregation

In this section, we briefly recall the theoretical approach to monetary aggregation. Let xt =

(x1t, ..., xkt)
′ and mt = (m1t, ...,mpt)

′ be respectively two vectors of real consumption goods and

real monetary assets in period t, t = 1, ..., T. Let lt be leisure. Assume that data are rationalized

by a well-behaved utility function:

Ut = U(xt,mt, lt) (1)

i.e. each bundle (x1t, ..., xkt,m1t, ...,mpt, lt)
′ is the solution of the utility maximization program1 ,

where the nominal price of money, for an asset mit is defined according to Barnett (1978):

pnit = pt
Rt − rit
1 +Rt

, i = 1, ..., k (2)

Where:

Rt is a benchmark rate,

rit is the asset’s own rate,

pt is a consumer price index.

To allow for aggregation, further assume that the utility function (1) is weakly separable over

the monetary assets, and thus admits a rewriting:

Ut = U(xt,mt, lt) = V (xt, U1(mt), lt) (3)

Where:

V (.) is a strictly increasing function, known as the macro-function,

U1(.) is the monetary sub-utility function, known as the micro-function, which, if homothetic, is

also the aggregator function.

The above weakly separable utility structure ensures that an aggregate exists over money2 .

Following Diewert (1976, 1978), if the preferences over the monetary assets are homothetic, then

1For theoretical justifications of money in the utility function, see Feenstra (1986) and Poterba and Rotemberg

(1987).
2Notice that here weak separability is assumed but not tested. For more formal testing procedures, see for

example Varian (1983), Swofford and Withney (1987, 1988), de Peretti (2007), Barnett and de Peretti (2009), or

Fleissig and Whitney (2003, 2005).
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U1(.) is interpreted as the aggregator function. An index number Q(mt+1,mt, p
n
t+1, p

n
t ), must

therefore satisfy:

Q(mt+1,mt, p
n
t+1, p

n
t ) =

U1(mt+1)

U1(mt)
(4)

If preferences are non-homothetic, the aggregator function is no longer the sub-utility function,

but the distance function. The distance function D(U1,mt) = maxl{l : U(mt/l) ≥ U1} returns

by what proportion one has to inflate or deflate the vector mt in order to reach the utility level

U1. A consistent aggregate is given by:

Q(mt+1,mt, p
n
t+1, p

n
t ) =

D(U1,mt+1)

D(U1,mt)
(5)

Diewert (1976, 1978, 1980) proved that in both case cases Q(mt+1,mt, p
n
t+1, p

n
t ) can be nonpara-

metrically and consistently estimated as:

Q(mt+1,mt, p
n
t+1, p

n
t ) =

p∏
i=1

[
mit+1

mit

](sit+1+sit)/2

(6)

Where:

sit is the budget share for the monetary asset i in period t,

U1 =
√
U1(mt+1)U1(mt).

Clearly, (6) is a discrete approximation of the continuous Divisia index.

In their seminal paper, Barnett, Offenbacher and Spindt (1984) present a very comprehensive

survey of the so-called Divisia aggregation. They show that very different conclusions are drawn

when one considers Divisia aggregation, rather than simple-sum aggregates, the latter being

valid only if the assets are substitutes, which is an unrealistic assumption. As an illustration,

Figure (1) plots two monetary aggregates: The DM4 (see below), and the simple-sum built by

adding the component levels of the DM4 assets. Both aggregates are divided by a consumer

price index and are in log-form. On the same figure, we plot (right scale) the aggregation bias,

which is computed as the difference between the two indices. Clearly, the error is not constant

over time and dramatically increases up to the early 90’s, according to the explosion of financial

innovations. After the early 90’s, the bias decreases, and then constantly increases at a lower

growth rate. Notice that the bias reflects different trends in the two series. The time-varying

nature of the bias implies that simple-sum aggregates can not be used as proxies of Divisia

aggregates.*
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Figure 1: Real DM4, simple-sum over the same components as the DM4, aggregation bias.

(shaded area, right sclale).

3 Non-causality tests in persistence-robust econometric mod-

els

To analyze the role of Divisia money in the economy, we use standard Granger non-causality tests

in VAR models. Two frameworks are considered that do not impose pre-testing for persistence

nor for cointegration: The FM-VAR approach of Phillips (1995), and the surplus-lag VARX

model of Bauer and Maynard (2012). The former approach allows modeling a mixture of I(0)/I(1)

variables without specifying the order of integration of each component, nor the dimension of the

cointegration space. The latter framework is more general since it also takes into account other

forms of persistence in the causal variable as local-to-unity processes, fractional integration/ long

memory and unmodeled structural breaks-in-mean in the causal variable. We first describe the

FM-VAR method.

3.1 The Fully-Modified approach to VAR modeling

Let yt be a k-vector time series generated by the finite-order VAR of order p, VAR(p):

yt = J(L)yt−1 + εt, t = 1, 2, .., T (7)
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Table 1: SupFT (l + 1|l) sequential tests for structural breaks, monetary components

∆ div4rt, Lag = 2, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 23.22 14.60
2 1 14.37 16.53
3 2 08.57 17.43

Final (global) Estimates of the Single Break:
Sep1981

∆ div4mrt, Lag = 2, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 31.11 14.60
2 1 22.98 16.53
3 2 16.46 17.43

Final (global) Estimates of the Two Breaks:
Feb1996, Mar2008

∆ div3rt, Lag = 2, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 44.99 14.60
2 1 19.90 16.53
3 2 15.81 17.43

Final (global) Estimates of the Two Breaks:
Apr1995, Mar2008

where:

J(L) =
p∑
i=1

JiL
i−1,

εt ∼Niid(0,Σεε).

(7) can be equivalently re-written as:

yt = B(L)∆yt−1 +Ayt−1 + εt (8)

where:

B(L) =
p−1∑
i=1

BiL
i−1 with Bi = −

p∑
j=i+1

Jj ,

and A = J(1).

or as:

∆yt = B(L)∆yt−1 + Πyt−1 + εt (9)

where:

Π = A− Ik
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This latter representation is the Vector Error Correction form representation of a VAR process.

The A matrix or (Π) contains all relevant information about the long-term relationships. Now,

re-write model (8) as:

yt = Bzt +Ayt−1 + εt (10)

= Fxt + εt (11)

Where:

zt = (∆y′t−1, ...,∆y
′
t−p+1)′.

xt = (∆y′t−1, ...,∆y
′
t−p+1, y

′
t−1)′,

B = [B1, B2, .., Bp−1].

Or in matrix form as:

Y ′ = BZ ′ +AY ′−1 + E′ (12)

= FX ′ + E′ (13)

Where:

F = [B1, ..., Bp−1, A].

Since the above model can not be effi ciently estimated by Ordinary Least Square (OLS) due to

a second order (endogeneity) bias, Phillips (1995) suggest applying the Fully Modified estimator

(Phillips and Hansen, 1990) to the system. Define Ω̂εy and Ω̂yy as estimates of the two-sided

long-run covariance matrices of respectively ηt = (ε̂t = yt − Fxt,∆yt−1) and ∆yt−1, where ε̂t

are the OLS residuals of model (8). Also define ∆̂ε∆y and ∆̂∆y∆y as estimates of the one-sided

long-run covariances matrices of respectively ηt = (ε̂t = yt − Fxt,∆yt−1) and ∆yt−1. Notice

that both types of matrices are kernel estimates. For instance Ω̂εy and ∆̂ε∆y are computed as:

Ω̂εy =
T−1∑

j=−T+1

w(j/k1)Γ̂(j) (14)

∆̂ε∆y =
T−1∑
j=0

w(j/k1)Γ̂(j) (15)

Where:

w(j/k1) is a kernel smoothing function,

k1 is the bandwidth or truncation parameter,

Γ̂(j) is the standard covariance estimator, T−1
T∑
t=1

ηtη
′
t+j

The FM-VAR estimator is then defined as:

F̂+ = [Y ′Z||Y ′Y−1 − Ω̂εyΩ̂−1
yy (∆Y ′−1Y−1 − T ∆̂∆y∆y)](X ′X)−1 (16)

7



Where:

|| is the horizontal stacking operator,

∆Y ′−1 = Y ′−1 − Y ′−2.

Compared to the standard FM estimator for OLS, no correction for autocorrelation is made.

Thus, the only correction is for endogeneity.

Defining F̂ = [Y ′Z||Y ′Y−1](X ′X)−1 as the simple OLS estimator, (16) can be re-written in

order to make apparent the correction for endogeneity:

F̂+ = F̂ − [Ω̂εyΩ̂−1
yy (∆Y ′−1Y−1 − T ∆̂∆y∆y)](X ′X)−1 (17)

A non-causality test from variable j in equation i, amounts to testing:

B1[ij] = ... = Bp−1[ij] = A[ij] = 0

which can be stated as:

H0 : Rvec(F̂+) = 0 (18)

where R is a (q × 1) suitable selection matrix, with here q = p. Then the corresponding Wald

test is given by:

W+ = T (Rvec(F̂+))′[R(Σ̂ε ⊗ T (X ′X)−1)R′]−1(Rvec(F̂+)) (19)

Phillips (1995) proved that under the null, W+ is asymptotically bounded by a Chi-squared

distribution with q degrees of freedom, q being the rank of R.

3.2 The surplus-lag VARX model

Alternatively, one may also consider surplus-lag models to test for non-causality between two

variables, y1t the dependent one and y2t the exogenously modeled forcing (causal) variable, given

a set zt = (y3t, .., ykt)
′ of control variables. We here follow Bauer and Maynard (2012), extending

and simplifying Toda and Yamamoto (1995). In our framework, i.e. the causality between two

series, write down and estimate the single equation of interest of a surplus-lag VARX(p, p1), here

a Auto-Regressive ARX(p, p1) process:

y1t =

p∑
j=1

(
ψ1
jy1t−j + ψ2

jzt−j
)

+
p1+1∑
j=1

ψ3
jy2t−j + εt (20)

and jointly test for ψ3
1 = ψ3

2 = ... = ψ3
p1 = 0 using a standard Wald tests3 .

3See Bauer and Maynard (2012) for computational details.
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The two models are clearly complimentary. On the one hand, if series are I(0)/I(1) and

cointegration is present, the FM-VAR is effi cient, unlike the VARX which forces an extra lag.

Nevertheless, as shown by Bauer and Maynard (2012) based on Monte Carlo simulations, effi -

ciency losses have a very limited impact on the power of causality tests. On the other hand,

for local-to-unity processes, the causality tests in FM-VAR’s may not behave well, as shown by

Yamada and Toda (1997), which is a case for which the VARX is designed for. Hence, different

informations between the two tests may indicate different kinds of persistence. For other kinds

of persistence, such as long memory, nothing is known for the FM-VAR.

We next turn to implementations4 .

4 Implementing the tests

The role of real money balance effects has recently been reconsidered by Favara and Giordani

(2009), using a structural VAR, imposing restrictions consistent with the New Keynesian frame-

work. They suggest that real money balances shocks may have a significant effect on output

and prices. Dorich (2009) reaches a very similar conclusion using a money-in-the-utility model.

Interestingly, he concludes that such effects may be based on a non-separable utility function,

a fundamentally different framework from ours. Those conclusions are in sharp contrast with

Woodford (2003) and Ireland (2004), who show the negligible impact of real money. All these

articles used inconsistent measures of money. Here, we reconsider their conclusions using three

different theoretically-consistent measures of broad money. We first describe the data and ana-

lyze their statistical properties in terms of structural breaks, and the implement the described

non-causality tests.

4.1 Data

Let y1
t = (div4rt, indprot, irstt, irltt,∆12pt)

′, y2
t = (div4mrt, indprot, irstt, irltt,∆12pt)

′ and

y3
t = (div3rt, indprot, irstt, irltt,∆12pt)

′ be k-vectors of variables being integrated of order 1 or 0,

where: div4rt, div4mrt and div3rt are respectively the logarithms of the real Divisia DM4, DM4-

and DM3 indices; indprot is the logarithm of the Industrial Production Index, used as a proxy

of the real activity; irstt and irltt are respectively short (three-month) and long-term (one year)

interest rates and ∆12pt is the Consumer Price Index inflation rate. All data are on a monthly

basis, and span, for the United States, the period covering January 1968 to December 2012. Data

4All the routines, i.e the FM-VAR model, the surplus-lag VARX as well as the Bai and Perron (1998) tests
(see below) are programmed using SAS/IML and are available under request at the corresponding author email
adress: philippe.de-peretti@univ-paris1.fr
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Table 2: SupFT (l + 1|l) sequential tests for structural breaks, Other components

∆(∆12pt), Lag = 3, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 43.40 16.76
2 1 21.92 18.56
3 2 19.40 19.53
4 3 10.75 20.24

Final (global) Estimates of the Three Breaks:
Nov1982, Oct1991, Oct2007

∆indprot, Lag = 3, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 34.96 16.76
2 1 09.42 18.56
3 2 07.96 19.53

Final (Global) Estimates of the Single Break:
Dec1981

∆irstt, Lag = 1, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 07.39 12.25
2 1 04.25 13.83
3 2 04.01 14.73

∆irltt, Lag = 2, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 12.09 14.06
2 1 08.38 13.83
3 2 06.50 14.73

are collected from the Federal Reserve of St Louis5 , except the Divisia indices computed by the

Center for Financial Stability6 (CFS). The CFS monthly reports statistics for Divisia indices as

the broad DM4, DM4-, which is DM4 without short term treasury bills, and DM3, which does

not include treasuries nor commercial paper, corresponding to the discontinued M3 aggregate.

Barnett et al. (2012) describe the construction of those monetary aggregates. The nominal price

of money for each asset is computed using a corresponding interest rate and a benchmark rate;

interest bearing checking accounts are paired with the national average interest rate on those

accounts, for example. The benchmark rate is chosen as a maximum rate among the ‘basket’

of component rates along with other comparable loan rates. Included in this basket is a short

5http://research.stlouisfed.org/fred2/
6www.centerforfinancialstability.org
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Table 3: SupFT (l + 1|l) sequential tests for structural breaks in variances for the two interest
rates

∆irstt, Lag = 0, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 78.12 12.25
2 1 13.25 13.83
3 2 12.66 14.73

Global Estimates of the Two Breaks:
Sep1982, Nov2007

∆irltt, Lag = 1, h = 0.1
l + 1 l SupFT (l + 1|l) Cut− off(5%)
1 0 22.13 12.25
2 1 13.35 13.83
3 2 12.71 14.73

Global Estimates of the Two Breaks:
Jul1979, Nov2007

Table 4: Sub-Periods for the non-causality tests

Sub-Periods for y1
t

Sub-Period Points in the Database Dates
1 [1, 139[ [Jan1968,Jul1979[
2 [179, 286[ [Nov1982,Oct1991[
3 [286, 478[ [Oct1991,Oct2007[
4 [479, 539] [Nov2007,Dec2012]

Sub-Periods for y2
t

Sub-Period Points in the Database Dates
1 [1, 139[ [Jan1968,Jul1979[
2 [179, 286[ [Nov1982,Oct1991[
3 [286, 338[ [Oct1991,Feb1996[
4 [338, 478[ [Feb1996,Oct2007[
5 [479, 539] [Nov2007,Dec2012]

Sub-Periods for y3
t

Sub-Period Points in the Database Dates
1 [1, 139[ [Jan1968,Jul1979[
2 [179, 286[ [Nov1982,Oct1991[
3 [328, 478[ [Apr1995,Oct2007[
4 [479, 539] [Nov2007,Dec2012]

Note: Samples with less than 50 observations are not considered
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term lending rate to commercial and industrial firms, a suggested in Offenbacher and Shachar

(2011), who use the loan rate as the maximum hypothetical interest sacrificed for the liquidity

service of the real assets. The loan rate is commonly the highest and therefore the benchmark

rate compared. Depending on the period there are between fourteen and seventeen component

asset and interest rate pairs included in the broadest possible aggregate, Divisia M4 (DM4)

to account for entry and exit of assets, changes in survey methodology, and innovation in the

financial markets. Money market demand accounts (MMDA) do not enter into the survey until

the early 1980s, and then exit the survey in 1991 as they are folded into the more general savings

accounts survey that exists throughout the entire period. Given the above discrete approximation

methodology a consistent Divisia aggregate is then produced for econometric analysis.

Over such a long period, one can expect structural breaks to occur in either the mean or the

variance (or in both) of the series, especially in their growth rates. Such breaks have been reported

by a number of authors as Guégan and de Peretti (2013). Moreover, testing for structural breaks

in first differences is of particular importance when dealing with FM-VAR models. Indeed, recall

that such a methodology requires computing long-run covariances matrices, using both residuals

and first differences of series.

To test for structural breaks, we proceed in two steps. We first use the procedure suggested

in Bai and Perron (1998) to find the optimal number of breaks, by sequentially computing the

SupFT (l + 1|l) statistics, where l is the number of breaks under the null. For a given series,

we begin by computing SupFT (1|0), to test for no break against a single break. If the null is

rejected, we then add an additonal break for one of the two segments, compute SupFT (2|1), and

so on, until we fail to reject the null of no additional break. Then, taking l as the number of

breaks, in a second step, we compute the breaking dates using a global minimizer. Tables (1, 2)

report the results for a pure structural change model for a window h = 0.1. At the 5% threshold,

all series, except the two interest rates, exhibit one or several breaks. The broadest monetary

aggregate exhibit a clear single break in September 1981, coinciding with a contraction in broad

money growth. The sub-aggregates DM3 and DM4- differ from the broader DM4 in that they

experience a break in early 2008. This specific break does not coincide with any major revision

in the monetary data collection methodology of the Federal Reserve7 , but does coincide with

the rate cuts enacted by the Federal Reserve in September and October of 2007 as well as a

7The closest major revision to the data methodology as described in Barnett et al (2013) is the discontinuation
of M3 components including overnight repurchase agreements, requiring a new data source for such components.
The discontinuation occurs in March of 2006, a little more than a year before the identified break in October
2007.
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Federal Reserve program to conduct a large ($100 billion) series of repurchase agreements over

the course of twenty eight days in March of 2008. The monetary sub aggregates show an added

break in April 1995 and February 1996, close to the beginning of the inclusion of retail sweeps

in calculation of the Divisia8 . A retail sweep occurs when banks reclassify checking deposits as

savings deposits to skirt legal reserve requirements. Checking accounts are then underreported

while savings accounts are over reported by a significantly large amount. Given the differing

weights associated with each monetary component, the entrance of sweeps into the calculation

and its subsequent take-off after 19969 , it is interesting that the break occurs during the period

sweeps become relatively large (1995-1996) in the sub aggregates, but not the broadest: DM4.

For the inflation rate two breaks are found at the 5 % level and 3 at the 10% one. We thus

adopt a 3-break model for the inflation rate model, which is line with Benati and Kapetanios

(2003) using a slightly different methodology. For the growth rates of real activity, tests support

a one-break model. Interestingly, activity and broad money exhibit a break close to the same

time in late 1981.

For the two interest rates, no breaks in growth rates are observed. For these two series, we

also tests for breaks in variance. As a rough analysis, we implement structural break tests on the

square residuals of the two models defined in Table (2). Results are reported in Table (3). At

the 5% threshold, both series exhibit a clear break, and at the 10% two breaks. In both cases,

we conclude here in favor of a two-break model for the two series. Notice that both series exhibit

a break in the late 2007, at nearly the same date.

Grouping the results of structural break tests suggests testing for non-causality on different

sub-periods, presented in Table (4).

4.2 Non-causality in FM-VAR models

To estimate the various FM-VAR models10 , we have to jointly choose two parameters: i) The lag

p of the VAR model, ii) The bandwidth parameter k1, knowing that for k1 several intervals are

given by Phillips (1995) that rule out automatic bandwidth selection procedures (see Andrews,

1991). To tackle this problem, we adopt a two-step data-driven procedure. First, using a

double loop over p and k1, we estimate various FM-VAR models (8) on p = 2, ..., 10, and for

k1 ∈]1/4, 2/3[ (see assumption BW p. 12 and theorem p 37), and keep the models having

8Unfortunately the retail sweep program for the St. Louis Fed has been discontinued. The data has not been
available since March 2012, and those wishing to incorporate sweeps are left to estimate them as needed.

9See Anderson and Rasche (2001) for a more detailed description of sweeps programs.
10Following Andrews and Monahan (1992), a pre-whitened method is used in all models.
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spherical disturbances. On a second run, among all these models, we select the one with the

minimal AIC criterion (Akaike, 1974), and implement non-causality tests in this model. We

report two kinds information: i) The estimates of the various long-term matrices A in Tables

5, 8 and 11, where the d variable signals if deterministic terms are added, where d = 1 means

that an intercept is added, and d = 2 that an intercept plus a linear trend are included, and

ii) The whole causal structure of the model. This allows analyzing if the long-term relations

appear stable over time, as well as the stationarity of the variables, even if not formally tested.

Specifications of the models are also presented. Tables (6), (9) and (12) present the results of

non-causality tests for the different definitions of money.

Non-causality tests for DM4 Looking first at Table (5), it appears that the long term

relationships change from a period to another, as the stationarity of the series. For instance,

the long-term interest rate appears to be non-stationary in sub-period 1 but stationary in sub-

periods 2 and 3. Picking an other example, Divisia money is also integrated of order one in

sub-periods 1, 2 and 3. The sub-periods 4 being hard to interpret due to the non-nullity of the

cross-coeffcicients. Turning to non-causality tests, Table (6), we fail to reject the null of non-

causality from to money to activity in all sub-periods, whereas activity clearly granger-causes

money in the last three periods. For sub-period 1, causality is found only at the 10 % threshold.

Concerning the other causal relationships, unexpectedly, the short-term interest rate seems to

play no driving role concerning activity, but appears to be a causal variable for money. At last,

note that, except for few exceptions, the whole causal structure of the systems change from one

period to another.

Non-causality tests for DM4- As previously noticed, here again, the first striking point is

that the long-term matrices are period-dependent, Table (8). Turning to non-causality tests,

Table (9), in all sub-periods, the null of non-causality from money to real activity is not rejected.

In the same time, real activity Granger-causes money, but the results depend on the time-period

considered. The null is accepted for sub-periods 1 and 3, and deeply rejected over periods 2,

4 and 5. Over these two latter periods, the short-term interest rate is the driving force of real

activity. The relation between the interest rate and money is also not constant over time, and

we reach a very similar conclusion as for DM4: the causal structures of the systems change over

time.
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Non-causality tests for DM3 Focusing now on DM3, and only on causality tests as presented

in Table (12), we have the same patterns: On sub-period 1, we have no causal relationships

between money and activity On sub-periods 2, 3 and 4, we reject non-causality from activity to

money, while we fail to reject the null from money to activity.

Hence, whatever the definition of money used, the causal relationship for all models is clearly

from activity to money, and not the converse.

4.3 Non-causality in surplus-lag VARX models

We next turn to results of non-causality tests in surplus-lag VARX models. Similarly to what

we did for the FM-VAR lag selection, we use a double loop over p and p1, for p, p1 = 1, ..., 10,

estimate the various ARX(p,p1) models, and keep those with spherical disturbances. In a second

trial, among these models, we choose the one with the minimal AIC. Results are given by Tables

(7), (10) and (13). We report the kind of model used, as well as the Wald statistic and the

associated p-value, only for money and real activity.

Non-causality tests for DM4 Results using the broad monetary aggregate DM4, are similar

with those obtained using the FM-VAR methodology. In sub-periods 2, 3 and 4 real activity is a

causal variable of money. Results are less clear for sub-period 1 where causality is found only at

the 10 % threshold. Interestingly, only in sub-period 2, the causal relation is bilateral, a result

which is also suggested in Table (6).

Non-causality tests for DM4- Results are presented in Table (10). Concerning the null of

non-causality from money to activity, it is accepted in all sup-periods. Focusing now on the

causal relationship from activity to money it is clearly period-dependent, as within the FM-VAR

framework: The null is rejected for sub-periods 2 and 5 (here at 10%), but accepted for other

samples. Clearly, compared with DM4, the relationship is much more unstable.

Non-causality tests for DM3 At last, focusing on non-causality tests for DM3 returns ex-

actly the same information as for tests implemented in FM-VAR models. For sub-period 1, no

causal relationships are found between money and activity, whereas over other periods, the causal

relationship is from activity to money. Hence, DM3 seems to behave as DM4.
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5 Conclusion and discussion

In this paper, we have used Granger non-causality tests to investigate the empirical relationships

between real money and activity. Three different broad measures of money as defined by the

CFS have been used, DM4, DM4- and DM3. Tests have been implemented within two distinct

frameworks: FM-VAR and surplus-lag VARX models. Results return important features: i) For

all three aggregates, and for different sub-periods, tests suggest that if causality is found, it is

from activity to real money, ii) In all models, there is no causal links between money and activity

during the period January 1968 to July 1979, iii) For DM4-, the results are period-dependent,

and the two aggregates showing a stable relationship with activity are the DM4 and DM3 ones,

iv) From one sub-period to another, the whole causal structure of the systems, as well as the

stationarity of some series seems to change, maybe also explaining the instability found previously

by researchers, v) At last, the two methodologies return very similar information.
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Table 5: Long-term matrices A for the four sub-periods. Money defined as div4rt

y1
t = (div4rt, indprot, irstt, irltt,∆12pt)

′

Sub-period 1 Sub-period 2
p = 4, k1 = 0.42, d = 1 p = 4, k1 = 0.51, d = 1

1.00 −0.01 0.00 0.00 0.05
0.01 0.99 0.00 0.00 −0.01
−1.09 0.53 0.84 −0.05 4.73
−0.91 0.97 −0.01 0.90 0.38
−0.03 0.03 0.00 0.00 0.95




0.98 0.00 0.00 0.00 −0.08
0.01 0.99 0.00 0.00 −0.15
−2.75 0.54 0.96 −0.07 −2.42
−5.48 3.46 0.01 0.87 −12.31
−0.01 0.02 0.00 0.00 0.88



Sub-period 3 Sub-period 4
p = 5, k1 = 0.64, d = 2 p = 4, k1 = 0.53, d = 1

0.99 0.02 0.00 0.00 0.02
−0.01 0.97 0.00 0.00 −0.02

0.03 −0.86 1.00 −0.02 −1.47
0.48 −0.53 0.05 0.81 −2.87
0.00 0.00 0.00 0.00 0.86




0.23 −0.12 0.02 0.00 −0.79
−0.12 0.85 0.00 0.00 0.09
−2.91 2.33 0.90 0.11 −3.37
−1.11 −5.99 0.21 0.66 6.88

0.02 0.10 0.00 0.00 0.75
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Table 6: FM-VAR causal structure. Non-causality from variable j in equation i. Main entries
are the Wald statistics and the p-values (between parentheses)

Sub-period 1
p = 4, k1 = 0.42, d = 0, AIC = −37.41, BIC = −34.76

↓ i → j div4rt indprot irstt irltt ∆12pt

divrt ****** 9.339 (0.053) 2.667 (0.615) 8.001 (0.091) 4.243 (0.374)

indprot 2.947 (0.566) ****** 5.742 (0.219) 0.456 (0.977) 1.840 (0.765)

irstt 15.712 (0.003) 3.420 (0.490) ****** 1.425 (0.839) 5.222 (0.265)

irltt 3.851 (0.426) 4.570 (0.334) 2.595 (0.628) ****** 3.239 (0.519)

∆12pt 3.643 (0.456) 14.311 (0.006) 8.770 (0.067) 18.793 (0.000) ******

Sub-period 2
p = 4, k = 0.51, d = 0, AIC = −34.57, BIC = −30.59

↓ i → j div4rt indprot irstt irltt ∆12pt

divrt ****** 10.150 (0.038) 9.497 (0.049) 5.347 (0.235) 3.853 (0.426)

indprot 9.143 (0.057) ****** 1.084 (0.896) 1.857 (0.762) 7.823 (0.098)

irstt 4.672 (0.322) 0.935 (0.919) ****** 13.708 (0.008) 1.201 (0.878)

irltt 6.879 (0.142) 7.296 (0.121) 1.106 (0.893) ****** 3.534 (0.473)

∆12pt 1.820 (0.768) 1.358 (0.851) 1.737 (0.783) 0.682 (0.953) ******

Sub-period 3
p = 5, k1 = 0.64, d = 1, AIC = −39.98, BIC = −36.84

↓ i → j div4rt indprot irstt irltt ∆12pt

divrt ****** 17.434 (0.004) 12.893 (0.024) 8.559 (0.128) 2.642 (0.754)

indprot 8.647 (0.124) ****** 9.444 (0.093) 4.147 (0.528) 3.362 (0.644)

irstt 1.803 (0.875) 17.691 (0.003) ****** 13.947 (0.016) 2.431 (0.787)

irltt 3.103 (0.684) 3.613 (0.606) 17.441 (0.004) ****** 3.821 (0.575)

∆12pt 2.419 (0.788) 7.862 (0.164) 15.322 (0.009) 0.756 (0.981) ******

Sub-period 4
p = 4, k1 = 0.53, d = 0, AIC = −34.57, BIC = −30.59

↓ i → j div4rt indprot irstt irltt ∆12pt

divrt ****** 33.852 (0.000) 23.921 (0.000) 7.430 (0.115) 17.023 (0.002)

indprot 0.810 (0.937) ****** 6.864 (0.143) 4.300 (0.366) 0.511 (0.972)

irstt 9.664 (0.046) 32.042 (0.000) ****** 7.938 (0.094) 1.932 (0.748)

irltt 1.572 (0.813) 9.187 (0.056) 7.265 (0.122) ****** 5.035 (0.284)

∆12pt 11.601 (0.021) 6.851 (0.144) 2.047 (0.727) 4.748 (0.314) ******
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Table 7: Non-causality tests in surplus-lag VARX models. Money defined as DM4

Sub-period 1
Model Dependent Variable Forcing Variable (Causal) Exogenous Control Variables Wald

ARX(3,3) div4rt indprot irstt,irltt,∆12pt 7.294 (0.063)
ARX(3,2) indprot div4rt irstt,irltt,∆12pt 0.128 (0.937)

Sub-period 2
ARX(3,3) div4rt indprot irstt,irltt,∆12pt 9.083 (0.028)
ARX(3,3) indprot div4rt irstt,irltt,∆12pt 9.198 (0.027)

Sub-period 3
ARX(2,5) div4rt indprot irstt,irltt,∆12pt 13.364 (0.020)
ARX(2,5) indprot div4rt irstt,irltt,∆12pt 7.078 (0.214)

Sub-period 4
ARX(2,2) div4rt indprot irstt,irltt,∆12pt 30.752 (0.000)
ARX(7,2) indprot div4rt irstt,irltt,∆12pt 0.835 (0.658)
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Table 8: Long-term matrices A for the five sub-periods. Money defined as div4mrt

y2
t = (div4rmt, indprot, irstt, irltt,∆12pt)

′

Sub-period 1 Sub-period 2
p = 5, k1 = 0.53, d = 0 p = 4, k1 = 0.56, d = 1

1.00 −0.01 0.00 0.00 0.04
−0.05 1.00 0.00 0.00 0.07
−6.15 3.84 0.66 −0.32 14.73
−2.61 2.51 −0.01 0.78 1.00
−0.03 0.03 0.00 0.00 0.95




0.89 0.12 0.00 0.00 0.01
0.03 0.94 0.00 0.00 0.16
−5.74 5.31 0.89 −0.21 1.35
−13.76 13.51 −0.13 0.55 −3.80

0.08 −0.08 0.00 0.00 0.88



Sub-period 3 Sub-period 4
p = 4, k1 = 0.66, d = 1 p = 6, k1 = 0.38, d = 2

0.73 −0.07 0.00 0.00 0.13
−0.08 −0.14 0.00 0.00 0.31
−14.51 −5.40 0.63 0.38 −38.19
−52.18 −11.07 −0.03 1.01 −1.63
−0.20 0.09 0.00 0.00 −0.28




0.88 −0.01 0.00 0.00 −0.17
0.01 0.91 0.00 0.00 −0.15
−1.84 −3.86 1.06 −0.01 −7.19
−0.85 1.32 0.00 0.85 8.52

0.04 0.09 0.00 0.00 1.00


Sub-period 5

p = 4, k1 = 0.49, d = 1
0.99 0.02 0.00 0.00 0.02
−0.01 0.97 0.00 0.00 −0.02

0.03 −0.86 1.00 −0.02 −1.47
0.48 −0.53 0.05 0.81 −2.87
0.00 0.00 0.00 0.00 0.86
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Table 9: FM-VAR causal structure. Non-causality from variable j in equation i. Main entries
are the Wald statistics and the p-values (between parentheses)

Sub-period 1
p = 5, k1 = 0.53, d = 0, AIC = −36.85, BIC = −33.46

↓ i → j div4mrt indprot irstt irltt ∆12pt

div4mrt ****** 8.094 (0.151) 8.413 (0.135) 9.763 (0.082) 3.085 (0.686)

indprot 3.864 (0.569) ****** 5.722 (0.334) 0.756 (0.979) 2.832 (0.725)

irstt 18.791 (0.002) 4.852 (0.434) ****** 6.055 (0.301) 13.697 (0.0176)

irltt 7.205 (0.205) 14.268 (0.014) 2.721 (0.742) ****** 6.636 (0.249)

∆12pt 7.812 (0.166) 10.993 (0.051) 6.764 (0.238) 19.267 (0.001) ******

Sub-period 2
p = 4, k = 0.56, d = 1, AIC = −36.93, BIC = −33.79

↓ i → j div4mrt indprot irstt irltt ∆12pt

div4mrt ****** 32.972 (0.000) 29.359 (0.000) 23.865 (0.000) 7.307 (0.120)

indprot 4.628 (0.327) ****** 1.395 (0.845) 0.880 (0.927) 6.607 (0.158)

irstt 5.233 (0.264) 3.645 (0.456) ****** 14.925 (0.005) 1.230 (0.873)

irltt 19.627 (0.000) 20.532 (0.000) 5.616 (0.229) ****** 0.802 (0.938)

∆12pt 10.521 (0.032) 8.931 (0.062) 11.699 (0.019) 9.021 (0.061) ******

Sub-period 3
p = 4, k1 = 0.66, d = 1, AIC = −39.29, BIC = −35.08

↓ i → j div4mrt indprot irstt irltt ∆12pt

div4mrt ****** 2.759 (0.598) 8.181 (0.085) 6.682 (0.154) 2.815 (0.589)

indprot 1.843 (0.764) ****** 7.287 (0.121) 9.642 (0.046) 3.399 (0.493)

irstt 1.825 (0.767) 3.991 (0.407) ****** 13.066 (0.011) 1.075 (0.898)

irltt 7.526 (0.111) 8.094 (0.088) 8.841 (0.065) ****** 14.400 (0.006)

∆12pt 6.808 (0.146) 2.569 (0.632) 4.648 (0.325) 12.899 (0.012) ******

Sub-period 4
p = 6, k1 = 0.38, d = 2, AIC = −39.10, BIC = −33.74

↓ i → j div4mrt indprot irstt irltt ∆12pt

div4mrt ****** 14.287 (0.026) 11.239 (0.081) 10.350 (0.110) 13.735 (0.032)

indprot 7.529 (0.274) ****** 15.374 (0.017) 6.088 (0.413) 9.588 (0.143)

irstt 8.160 (0.226) 6.767 (0.343) ****** 9.969 (0.125) 6.345 (0.385)

irltt 1.788 (0.938) 7.920 (0.244) 3.506 (0.743) ****** 6.332 (0.387)

∆12pt 4.359 (0.628) 11.571 (0.072) 16.518 (0.011) 4.166 (0.641) ******
Sub-period 5

p = 4, k1 = 0.49, d = 1, AIC = −32.61, BIC = −29.29

↓ i → j div4mrt indprot irstt irltt ∆12pt

div4mrt ****** 10.887 (0.027) 7.746 (0.101) 8.240 (0.083) 4.410 (0.353)

indprot 1.816 (0.769) ****** 15.805 (0.003) 2.134 (0.711) 0.344 (0.986)

irstt 6.384 (0.172) 41.646 (0.000) ****** 5.067 (0.280) 2.339 (0.373)

irltt 7.803 (0.099) 4.577 (0.333) 3.495 (0.478) ****** 8.925 (0.063)

∆12pt 6.085 (0.192) 9.969 (0.041) 3.243 (0.518) 4.143 (0.387) ******
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Table 10: Non-causality tests in surplus-lag VARX models. Money defined as DM4-

Model Dependent Variable Forcing Variable (Causal) Exogenous Control Variables Wald
Sub-period 1

ARX(2,2) div4mrt indprot irstt,irltt,∆12pt 4.389 (0.111)
ARX(6,2) indprot div4mrt irstt,irltt,∆12pt 0.238 (0.887)

Sub-period 2
ARX(2,2) div4mrt indprot irstt,irltt,∆12pt 6.778 (0.033)
ARX(2,2) indprot div4mrt irstt,irltt,∆12pt 1.377 (0.502)

Sub-period 3
ARX(2,2) div4mrt indprot irstt,irltt,∆12pt 1.866 (0.393)
ARX(2,2) indprot div4mrt irstt,irltt,∆12pt 0.389 (0.823)

Sub-period 4
ARX(2,3) div4mrt indprot irstt,irltt,∆12pt 5.109 (0.163)
ARX(2,2) indprot div4mrt irstt,irltt,∆12pt 0.402 (0.817)

Sub-period 5
ARX(2,2) div4mrt indprot irstt,irltt,∆12pt 5.177 (0.075)
ARX(2,2) indprot div4mrt irstt,irltt,∆12pt 2.241 (0.326)

Table 11: Long-term matrices A for the four sub-periods, money defined as div3rt

y3
t = (div3rt, indprot, irstt, irltt,∆12pt)

′

Sub-period 1 Sub-period 2
p = 5, k1 = 0.52, d = 0 p = 4, k1 = 0.32, d = 1

1.01 0.00 0.00 0.00 0.05
−0.05 1.00 0.00 0.00 0.07
−5.71 3.49 0.68 −0.32 14.87
−2.16 2.19 0.00 0.79 0.91
−0.03 0.03 0.00 0.00 0.95




0.96 0.04 0.00 0.00 0.00
0.04 0.94 0.00 0.00 0.12
1.28 −1.81 1.01 0.01 1.86
−1.14 1.13 −0.02 0.97 −7.11

0.02 −0.02 0.00 0.00 0.99



Sub-period 3 Sub-period 4
p = 5, k1 = 0.47, d = 0 p = 4, k1 = 0.50, d = 1

0.98 0.01 0.00 0.00 −0.05
0.00 0.99 0.00 0.00 −0.05
−0.11 −0.32 0.99 −0.06 0.46
−0.62 0.43 0.01 0.84 3.67

0.00 −0.01 0.00 0.00 0.88




0.70 0.13 −0.01 0.00 −0.26
−0.15 0.49 0.02 0.00 0.14

4.76 7.98 0.40 0.08 1.27
−1.59 −4.18 0.00 0.53 6.07

0.05 0.04 0.00 0.00 0.90
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Table 12: FM-VAR causal structure. Non-causality from variable j in equation i. Main entries
are the Wald statistics and the p-values (between parentheses)

Sub-period 1
p = 5, k1 = 0.52, d = 0, AIC = −36.96, BIC = −33.57

↓ i → j div3rt indprot irstt irltt ∆12pt

div3rt ****** 7.392 (0.193) 9.786 (0.081) 9.392 (0.094) 4.195 (0.521)

indprot 4.545 (0.474) ****** 5.431 (0.365) 0.741 (0.980) 3.287 (0.655)

irstt 18.738 (0.002) 4.364 (0.498) ****** 5.635 (0.343) 14.149 (0.015)

irltt 6.181 (0.289) 12.785 (0.025) 2.682 (0.748) ****** 5.942 (0.311)

∆12pt 7.332 (0.197) 9.971 (0.079) 6.956 (0.223) 19.002 (0.002) ******

Sub-period 2
p = 4, k = 0.32, d = 1, AIC = −36.70, BIC = −33.94

↓ i → j div3rt indprot irstt irltt ∆12pt

div3rt ****** 10.482 (0.033) 10.849 (0.028) 7.200 (0.125) 4.141 (0.387)

indprot 2.582 (0.629) ****** 0.939 (0.918) 1.835 (0.765) 5.434 (0.245)

irstt 1.189 (0.879) 3.187 (0.526) ****** 10.033 (0.039) 1.145 (0.887)

irltt 3.957 (0.411) 7.707 (0.103) 2.645 (0.619) ****** 1.957 (0.743)

∆12pt 1.495 (0.827) 1.613 (0.806) 1.391 (0.845) 0.687 (0.952) ******

Sub-period 3
p = 5, k1 = 0.47, d = 0, AIC = −39.57, BIC = −34.85

↓ i → j div3rt indprot irstt irltt ∆12pt

div3rt ****** 13.206 (0.021) 16.187 (0.006) 17.398 (0.004) 10.587 (0.060)

indprot 3.532 (0.618) ****** 5.576 (0.339) 11.355 (0.044) 6.375 (0.271)

irstt 8.370 (0.137) 5.236 (0.387) ****** 18.991 (0.002) 1.482 (0.915)

irltt 1.911 (0.861) 7.085 (0.214) 5.199 (0.392) ****** 4.701 (0.453)

∆12pt 3.301 (0.653) 6.747 (0.240) 9.971 (0.076) 3.183 (0.672) ******

Sub-period 4
p = 4, k1 = 0.50, d = 0, AIC = −34.31, BIC = −30.03

↓ i → j div3rt indprot irstt irltt ∆12pt

div3rt ****** 10.769 (0.029) 7.925 (0.094) 6.692 (0.153) 3.025 (0.553)

indprot 1.630 (0.803) ****** 16.402 (0.002) 3.272 (0.513) 0.608 (0.962)

irstt 5.046 (0.282) 32.016 (0.000) ****** 3.245 (0.517) 2.807 (0.590)

irltt 7.441 (0.114) 3.822 (0.430) 3.686 (0.450) ****** 8.737 (0.068)

∆12pt 5.877 (0.208) 8.292 (0.081) 4.963 (0.291) 4.369 (0.358) ******
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Table 13: Non-causality tests in surplus-lag VARX models. Money defined as DM3

Sub-period 1
Model Dependent Variable Forcing Variable (Causal) Exogenous Control Variables Wald

ARX(2,2) div3rt indprot irstt,irltt,∆12pt 3.998 (0.135)
ARX(7,2) indprot div3rt irstt,irltt,∆12pt 0.486 (0.783)

Sub-period 2
ARX(3,2) div3rt indprot irstt,irltt,∆12pt 6.175 (0.045)
ARX(2,2) indprot div3rt irstt,irltt,∆12pt 1.653 (0.437)

Sub-period 3
ARX(2,4) div3rt indprot irstt,irltt,∆12pt 9.691 (0.045)
ARX(2,2) indprot div3rt irstt,irltt,∆12pt 0.781 (0.676)

Sub-period 4
ARX(2,2) div3rt indprot irstt,irltt,∆12pt 14.988 (0.000)
ARX(2,2) indprot div3rt irstt,irltt,∆12pt 1.260 (0.532)
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