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Abstract

We build on Fackler and King (1990) and propose a general
calibration model for implied risk neutral densities. Our model allows
for the joint calibration of a set of densities at di↵erent maturities
and dates. The model is a Bayesian dynamic beta Markov random
field which allows for possible time dependence between densities with
the same maturity and for dependence across maturities at the same
point in time. The assumptions on the prior distribution allow us
to compound the needs of model flexibility, parameter parsimony and
information pooling across densities.

Keywords: Bayesian inference, Beta random fields, Exchange
Metropolis Hastings, Markov chain Monte Carlo, Risk neutral measure.

1 Introduction

In financial mathematics, it is common to model stock prices as a geometric
Brownian motion with mean drift equal to µ under the physical probability
measure P, and afterwards want to price options on such an asset. In order to
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do so one has to perform a change of measure to the asset process in order to
make it risk neutral, meaning that it makes all investors neutral with respect
to risk preferences. Such a probability measure is denoted as Q (Delbaen
and Schachermayer, 2011). In general parametric stochastic process models,
the mathematical problem of performing a change of measure from P to
Q poses technical problems mainly due to the non-existeness of Q or
its non-uniqueness (Delbaen and Schachermayer, 2011; Boyarchenko and
Levendorskii, 2002). When departing from the regular geometric Brownian
motion to the jump di↵usion or geometric Lévy processes setup (Tankov
and Cont, 2003), uniqueness of Q is not guaranteed and several methods
such as the Esscher transform, among several, are used to circumvent these
limitations (Esscher, 1932; Gerber and Shiu, 1994).

The economic literature has shown an increasing interest in
nonparametric implied risk neutral densities (Fackler and King (1990); Lai
(2011)) since not only do they allows us to gauge what are the economic
agents thinking about the future and what are their economic expectation
(Bliss and Panigirtzoglou, 2004; Rodriguez and ter Horst, 2008), but also
the statistical superiority of nonparametric estimation of such risk-neutral
densities (Lai, 2011). The Fackler and King (1990) calibration procedure
of risk neutral densities, extracted from derivative prices, on the basis
of observations on a variable of interest such as the underlying, allows
us to obtain a density forecast for such a variable. Density forecast is
now widely used in many applied economic contexts. The nonparametric
calibration of implied risk neutral densities is now used in macroeconomics
to generate prediction on inflation and interest rates (see Bhar and Chiarella
(2000),Carlson et al. (2005), Vincent-Humphreys and Noss (2012), Vergote
and Gutiérrez (2012); Vesela and Gutiérrez (2013), Sihvonen and Vähämaa
(2014)).

Our contribution provides a dynamic estimation of the Radon-Nikodym
derivative that allows us to move from a nonparametric estimation of Q to a
nonparametric estimation of P. This last result therefore provides a natural
modelling framework for the term structure of the implied nonparametric
risk neutral and physical probability distributions, which accounts for the
possible dependence between the Probability Integral Transforms1 (PIT) at
di↵erent maturities and di↵erent dates for a given maturity. Since the PIT
belong to the unit interval, the calibration function of our model makes
use of beta densities as suggested by Fackler and King (1990). In order to

1
A Probability Integral Transform is defined by a given realization of a random variable

x

t

and as PIT

t

=

R
xt

�1 f(y)dy.

2



account for time and cross-maturity dependence, we propose a random field
model with beta densities. We make some general assumptions on the time
(lags) and spatial (neighbour system) structure that are needed to obtain
a parsimonious model. We provide a proper Bayesian inference framework,
that allow us to include parameter uncertainty in the density calibration.
Moreover, the use of hierarchical prior distributions allows us not only to
avoid potential over-fitting due to over-parameterization but also to achieve
di↵erent degrees of information pooling across maturities.

Our paper is also related to the literature on density forecast. The use
of densities for predicting quantities of interest is now common in economics
and finance (see for a review) and many recent papers focused on the
combination and the calibration of the predictive densities. Optimal linear
pool of densities is considered e.g. in Hall and Mitchell (2007), Geweke and
Amisano (2011), while more general approaches to density combination are
considered in Billio et al. (2013), Fawcett et al. (2013) and Gneiting and
Ranjan (2013). Modelling the time evolution of the optimal combination of
predictive densities is one of the challenging issues which is solved in these
papers. The issue of calibrating densities is considered instead in Gneiting
et al. (2005) and Gneiting and Ranjan (2013), which also propose the use of
beta densities to achieve a continuous deformation of the predictive density
and to obtain well calibrated PITs. Our paper also contributes to this stream
of literature, since it provides a general approach to the joint calibration of
densities allowing for the pooling of information across di↵erent predictive
densities (the risk neutral densities at di↵erent maturities). In despite of
presence in the forecasting and financial literature of similar issues, such as
the density calibration and combination, we shall notice that the implied
risk neutral calibration literature di↵ers substantially from the forecast
calibration literature, in that the first one assumes the calibration model
is generating the change of measure needed to obtain the physical measure
from the risk neutral.

Finally, as an aside note, we would like think that this paper also
contributes to the literature on modelling data on bounded domains. Our
Bayesian beta Markov random field model, and the inference procedure, are
original extensions to the multivariate context of the Bayesian beta models
and inferences recently proposed in the statistic literature. See Branscum
et al. (2007) for Bayesian beta regression and Casarin et al. (2012) for model
selection in Bayesian beta autoregressive models and the references therein.

The paper is organized as follow. Section 2 introduces density calibration
problem and our Bayesian beta random field model for the joint calibration.
In Section 3, we discusses the inference di�culties with the proposed model
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and develop a numerical procedure for posterior computation. In Section 4,
we study the e�ciency of our estimation procedure through some simulation
experiments. In Section 5 we provide an application to the Euro currency
while Section 6 concludes and discusses possible extensions.

2 A dynamic calibration model

Let xt,⌧
i

, i = 1, . . . ,M , t = 1, . . . , T , be a set of underlying realized forward

levels, available at time t for the di↵erent maturities ⌧
1

, . . . , ⌧M . Let FQ
t,⌧

i

(x)

and F

P
t,⌧

i

(x) denote the risk neutral and the physical cumulative density

functions (cdf), respectively and f

Q
t,⌧

i

(x) and f

P
t,⌧

i

(x) their probability density
functions (pdf).

We assume the following joint deformation model

F

P
t (xt,⌧1 , . . . , xt,⌧

M

) = Ct(F
Q
t,⌧1(xt,⌧1), . . . , F

Q
t,⌧

M

(xt,⌧
M

)) (1)

where Ct : [0, 1]M ! [0, 1], t = 1, . . . , T , is a sequence of deformation
functions. The model can be restated in terms of densities

f

P
t,⌧ (xt,⌧1 , . . . , xt,⌧

M

) = ct(F
Q
t,⌧1(xt,⌧1), . . . , F

Q
t,⌧

M

(xt,⌧
M

))
MY

j=1

f

Q
t,⌧

j

(xt,⌧
j

) (2)

where ct is the mixed partial derivative of Ct with respect all the arguments.
Let yjt = F

Q
t,⌧

j

(xt,⌧
j

), j = 1, . . . ,M , then in order to model the dependence
of the prediction densities at di↵erent dates, our modelling assumption is a
beta dynamic Markov random field (�-MRF). Let E = [0, 1] be the phase
space and S = {1, . . . ,M} the finite set of sites (see Bremaud (1999), ch. 7)
corresponding to the di↵erent maturities, then our �-MRF is defined by the
following local specification:

ct(y1t, . . . , yMt) =
1

Zt

MY

j=1

cjt(yjt|yN(j)) (3)

where yN(j) = {ykt, k 2 N(j) ⇢ S} with N(j) a member of the
neighbourhood system N , cjt represents the j-th components of the joint
calibration function ct and Zt is a normalization function which may depend
on the parameter of the calibration model and may be not know for some
�-MRF neighbourhood system specifications.

Modelling the full dependence structure between densities at the di↵erent
maturities and allowing for time-change in this structure may lead to over-
parametrized models and consequently to over-fitting problems. Thus, in

4



this paper we consider parsimonious beta MRF models. That is, we assume
a time-invariant topology (S,N) and focus on two special neighbourhood
systems. The first one is a Markov model

N(j) =

⇢
; if j = 1
{j � 1} if j 6= 1

and the second one is a proximity model

N(j) =

8
<

:

{2} if j = 1
{j � 1, j + 1} if j 6= 1,M
{M � 1} if j = M

connecting each density with the two adjacent densities in terms of maturity.
Following the standard practice in calibration literature (e.g., see Fackler

and King (1990)) we assume that the j-th component of the joint calibration
function is the probability density function of a beta distribution. In order
to account for possible time dependence in the PITs we let the parameter
of the beta calibration function of the density at maturity ⌧j to depend
on the past values of the PITs for the same maturity. We use the re-
parametrization of beta pdf used in Bayesian mixture models (e.g., see
Robert and Rousseau (2002) and Bouguila et al. (2006)) and Bayesian beta
autoregressive processes (e.g., see Casarin et al. (2012))

cjt(yjt|yN(j)) = Bjty
µ
jt

�
jt

�1

jt (1� yjt)
(1�µ

jt

)�
jt

�1 (4)

with

Bjt =
�(µjt)

�(µjt jt)�((1� µjt) jt)

and

µjt = '

0

@
↵

0j +
pX

k=1

↵kjyt�k,j +
X

k2N(j)

�kjyt,k

1

A (5)

�jt = �j (6)

with ' : R 7! [0, 1] a twice di↵erentiable strictly monotonic link function.
We assume a logistic function.
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3 Bayesian inference

Let xt = (xt,⌧1 , . . . , xt,⌧
M

) be a set of observations for di↵erent maturities,
and xp+1:T = (xp+1

, . . . ,xT ), then the likelihood of the model writes as

L(xp+1:T |✓) =
TY

t=p+1

f

P
t,⌧ (xt,⌧1 , . . . , xt,⌧

M

) (7)

=
TY

t=p+1

1

Zt

MY

j=1

Bjt(µjt�j , (1� µjt)�j)
⇣
F

Q
t,⌧

j

(xt,⌧
j

)
⌘µ

jt

�
j

�1

⇣
1� F

Q
t,⌧

j

(xt,⌧
j

)
⌘
(1�µ

jt

)�
j

�1

f

Q
t,⌧

j

(xt,⌧
j

)

Note that this is a pseudo-likelihood, since we assume that the p initial
values of the �-MRF are known.

In order to complete the description of our Bayesian random field model
we assume the following hierarchical specification of the prior distribution.
For a given j, with j = 1, . . . ,M , we assume

↵kj
i.i.d.⇠ N (↵j , s

2

j ) k = 0, . . . , p (8)

�kj
i.i.d.⇠ N (�j , g

2

j ), k = 1, . . . ,mj , (9)

For the second level of the hierarchy we assume

�j
i.i.d.⇠ Ga(⇠

1

, ⇠

2

), j = 1, . . . ,M (10)

↵j
i.i.d.⇠ N (↵, s2), j = 1, . . . ,M (11)

�j
i.i.d.⇠ N (�, g2), j = 1, . . . ,M (12)

where mj = Card(N(j)) is the number of elements of N(j), Ga(c, d) denotes
the gamma distribution with density

f(�|⇠
1

, ⇠

2

) =
1

�(⇠
1

)
�

⇠1�1 exp{�⇠

2

�}⇠⇠1
2

Moreover, in order to design an e�cient algorithm for posterior simulation
we consider the following re-parametrization �j = log(�j), j = 1, . . . ,M .
We define the parameter vector ✓ = (✓

1

, . . . ,✓M , ↵, �) where ✓j =
(↵j ,�j , �j , ↵j , �j), ↵j = (↵

0j , ↵1j , . . . , ↵pj) and �j = (�
1j , . . . , �m

j

j). Then
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the joint probability density function of the prior distribution is

f(✓) / exp

(
� 1

2s2
0

(↵� a)2 � 1

2g2
0

(� � b)2 �
MX

j=1

 
1

2s2j
(↵j � ↵)2 (13)

+
1

2g2j
(�j � �)2 +

1

2
(↵j � µj)

0

S

�1

j (↵j � µj)

+
1

2
(�j � ⌫j)

0

G

�1

j (�j � ⌫j)

◆) MY

j=1

exp{�⇠/2 exp(�j)} exp(⇠/2�j)

where µj = ↵j◆
(p+1)

, ⌫j = �j◆m
j

, with ◆n the n-dimensional unit vector.
The prior covariance matrices are Sj = s

2

jI(p+1)

and Gj = g

2

j Im, with In the
n-dimensional identity matrix.

The joint posterior distribution can be written as

⇡(✓|xp+1:T ) / exp

0

@�
TX

t=p+1

logZt �
TX

t=p+1

MX

j=1

logBjt (14)

+
TX

t=p+1

MX

j=1

⇣
Ajtµjt + (1� F

Q
t,⌧

j

(xt,⌧
j

))
⌘
exp(�j)

1

A
f(✓)

where
Bjt = Bjt(µjt exp(�j), (1� µjt) exp(�j))

and
Ajt = log(FQ

t,⌧
j

(xt,⌧
j

)/(1� F

Q
t,⌧

j

(xt,⌧
j

)))

A major problem with this model is that the normalizing constants Zt,
t = p+ 1, . . . , T , in the likelihood function and in the posterior distribution
are unknown and possibly depend on the parameters. Thus, samples from
⇡(✓|xp+1:T ) cannot be easily obtained with standard MCMC procedures.
For instance, the standard MH algorithm cannot be directly applied
because the acceptance probability involves ratios of unknown normalizing
constants. In the last two decades, various approximation methods have
been proposed in order to circumvent the problem of intractable normalizing
constants. Recently Møller et al. (2006) proposed an auxiliary variable
MCMC algorithm, which is a feasible simulation procedure for many models
with intractable normalizing constant. The Møller et al. (2006)’s single
auxiliary variable method has been successfully improved by Murray et al.
(2006). They propose the exchange algorithm, which removes the need to
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estimate the parameter before sampling begins, and has higher acceptance
probability than Møller et al. (2006) ’s algorithm. Unfortunately both the
single auxiliary variable and the exchange algorithms require exact sampling
of the auxiliary variable from its conditional distribution, which can be
computational expensive for many statistical models. An exact simulation
algorithm for our beta MRF model is not available, thus in this paper we
follow and alternative route and apply the double MH algorithm proposed by
Liang (2010). The double MH avoids the exact simulation step by applying
an internal MH step to generate the auxiliary variable.

Assume we are interested in simulating the auxiliary variable zp+1:T

from the conditional distribution L(zp+1:T |✓0). If the sample is generated
by iterating n times a MH algorithm with transition kernel K✓0(z|x), then
the n-step transition probability is

P

n
✓0(zp+1:T |xp+1:T ) = K✓0(x1

p+1:T |xp+1:T ) · · ·K✓0(zp+1:T |xn�1

p+1:T )

then the acceptance rate of the Murray et al. (2006)’s exchange algorithm
writes as

⇢(✓,✓0

, zp+1:T |xp+1:T ) =
f(✓)q(✓|✓0

,xp+1:T )

f(✓0)q(✓0|✓,xp+1:T )

L(zp+1:T |✓)
L(xp+1:T |✓)

P

n
✓0(zp+1:T |xp+1:T )

P

n
✓0(xp+1:T |zp+1:T )

(15)
If we chose q(✓|✓0

,xp+1:T ) as a Metropolis transition kernel then the
exchange is a MH step with transition P

n
✓0(zp+1:T |xp+1:T ) and target

distribution L(zp+1:T |✓), and the acceptance probability in Eq. 15 becomes

⇢(✓,✓0

, zp+1:T |xp+1:T ) =
L(zp+1:T |✓)
L(xp+1:T |✓)

L(xp+1:T |✓0)

L(zp+1:T |✓0)
(16)

Assume the current value of the MH chain is ✓(t) = ✓, then the double MH
sampler iterates over the following steps

1. Simulate a new sample ✓0 from ⇡(✓) using a MH algorithm starting
with ✓.

2. Generate the auxiliary variable zp+1:T ⇠ P

n
✓0(zp+1:T |xp+1:T ) and accept

it with probability min{1, ⇢(✓,✓0

, zp+1:T |xp+1:T )} given in Eq. 16

3. Set ✓(t+1) = ✓0 if the auxiliary variable is accepted and ✓t+1

= ✓
otherwise.

As regards to the first MH step in the double MH, we assume a multivariate
random-walk proposal, i.e.

✓⇤ ⇠ N (✓(t)
,⇤)
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where ⇤ a n-dimensional positive diagonal matrix, with n = (p+4)M+m+2.
Regarding the second MH step we consider a Gibbs sampler which

generates samples iteratively from the full conditional distributions of each
site. By using the Markov property of our dynamic random field with respect
the chosen neighbourhood system, the full conditional distribution of the j-
th site conditionally on the remaining sites is a function of the sites in the
neighbourhood of j, i.e.

⇡(xt,⌧
j

|xt,⌧
j�1 , xt,⌧j+1 ,✓) / (17)

Bjt

⇣
F

Q
t,⌧

j

(xt,⌧
j

)
⌘µ

jt

exp(�
j

)�1

⇣
1� F

Q
t,⌧

j

(xt,⌧
j

)
⌘
(1�µ

jt

) exp(�
j

)�1

f

Q
t,⌧

j

(xt,⌧
j

)

pY

k=1

Bj,t+k

⇣
F

Q
t+k,⌧

j

(xt+k,⌧
j

)
⌘µ

j,t+k

exp(�
j

)�1

⇣
1� F

Q
t+k,⌧

j

(xt+k,⌧
j

)
⌘
(1�µ

j,t+k

) exp(�
j

)�1

f

Q
t+k,⌧

j

(xt+k,⌧
j

)

Y

i2N(j)

Bit

⇣
F

Q
t,⌧

i

(xt,⌧
i

)
⌘µ

it

exp(�
i

)�1

⇣
1� F

Q
t,⌧

i

(xt,⌧
i

)
⌘
(1�µ

it

) exp(�
i

)�1

f

Q
t,⌧

i

(xt,⌧
i

)

for t = p+ 1, . . . , T and j = 1, . . . ,M . The full conditionals are not easy to
simulate from, thus we apply a MH step with proposal distribution

q(x|xt,⌧
j�1 , xt,⌧j+1 ,✓) /

⇣
F

Q
t,⌧

j

(x)
⌘µ

jt

�
jt

�1

⇣
1� F

Q
t,⌧

j

(x)
⌘
(1�µ

jt

)�
jt

�1

f

Q
t,⌧

j

(x)

which can be simulated exactly as follows: y

⇤ ⇠ Be(µjt exp(�j), (1 �
µjt) exp(�j)) and x

⇤ = F

Q,�1

t,⌧
j

(y⇤). This choice of the proposal distribution
leads to a simplification of the logarithmic acceptance probability:

log ⇢̃ =
X

i2N(j)

(logBit � logB⇤

it +Ait(µ
⇤

it � µit) exp(�i))

with B

⇤

it = Bit(µ⇤

it exp(�i), (1� µ

⇤

it) exp(�i)) and

µ

⇤

it = '

0

@
↵

0i +
pX

k=1

↵kjyt�k,i +
X

k2N(i),k 6=j

�kiyt,k + �jiy
⇤

1

A

which follows by the definition of neighbourhood system, that is if i 2 N(j)
then j 2 N(i).

4 Simulation exercise

The extraction of parametric and nonparametric risk-neutral densities has
been important not only for traders in order to use this density to price other
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more exotic derivatives but for central bankers as well and policy makers
(Aı̈t-Sahalia and Duarte, 2003; Rouah and Vainberg, 2007). Recently a
great deal of interest has grown in predicting the both the nonparametric
risk-neutral and its physical counterpart simultaneously for the 3-month
Euribor interest rate using the beta calibration function as provided by
Vesela and Gutiérrez (2013) for fixed expirations of the nonparametric
risk-neutral density instead of constant and rolling maturity expirations
such as 3,6,9, and 12 months as in Vergote and Gutiérrez (2012). These
constant maturity risk-neutral densities are interpolated in practice from
fixed expiration densities as done in Vergote and Gutiérrez (2012).

In this section we run several simulation exercises to test the accuracy
of our method to produce a calibration function that allows for better
assessment of the non-standard features usually encountered in the PIT
data. This exercise consists of several layers according to the following
sequence:

• First we produce the data under the physical measure, which will be
common to all the simulation exercises. We simulate price paths under
the physical measure for 3, 6 and 12 months for a time interval of T = 2
years, µ = 0.20, r = 0.05, � = 0.15, ⌧

1

= 0.25 (years), ⌧
2

= 0.5 (years)
and ⌧

3

= 1 (year).

• From that data, we estimate the risk neutral measure, assuming that
we incorrectly estimate the parameters of this risk neutral measure.
For this purpose, we assume two potential scenarios that cover the two
extremes:

1. Overestimation of the volatility of the Brownian Motion: We
will assume for the calibration exercise that we overestimate the
unknown volatility of the physical process and set � = 0.20.

2. Underestimation of the volatility of the Brownian Motion: We
will assume for the calibration exercise that we underestimate
the unknown volatility of the physical process and set � = 0.10.

3. In both cases, we are using r di↵erent than µ.

• For each of the cases above, and for each of the maturities in the
simulation exercise, we compare two curves (Figure (1)):

1. NC Curve: This is the non-calibrated curve. It simply states the
shape of the PITs CDF using the risk neutral data, under the
stated value of the volatility.
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2. C Curve: This is the calibrated data using the �-MRF process
using the risk neutral data, under the stated value of the volatility.

• As a reference, the 45 degree line represents the perfect scenario where
the PITs are not autocorrelated, and they are uniformly distributed.

In order to run this simulation, we assume that the data comes from
a standard process, namely a geometric Brownian motion process, St,
t 2 [0, T ], to model the price of the underlying as in Black and Scholes
(1973) and Merton (1973), i.e.

St = S

0

+

Z t

0

Suµdu+

Z t

0

Su�dW (u) (18)

where Wt, t 2 [0, T ], is a Wiener process.
We simulate price sample paths under the physical measure for 3, 6 and

12 months for a time interval of T = 2 years, µ = 0.20, r = 0.05, � = 0.15,
⌧

1

= 0.25, ⌧
2

= 0.5, and ⌧

3

= 1.
We also know analytically the risk-neutral densities of St+⌧

j

, j = 1, 2, 3,
conditional on St, which are given by:

f

Q
t,⌧

j

(St+⌧
j

) =
1

St+⌧
j

p
2⇡�2

⌧j
exp

"
�
[log(St+⌧

j

/St)� (r � 0.5�2)⌧j ]

2�2

⌧j

#
(19)

j = 1, 2, 3. Once we observe 3 months later a price level of St+⌧1 under
the historical measure, then we proceed to compute the 3, 6 and 12 months
PITs at time t as follows:

yt,⌧
j

=

Z S
t+⌧

j

�1

f

Q
t,⌧

j

(St+⌧
j

)dSt+⌧
j

(20)

j = 1, 2, 3. The next day at time t

1

= t+ 1, we recompute the PITs in the
same way as equation (20), obtaining a vector xt = (xt,xt+1

, ...,xt+T ) where
again xs = (FQ

s,⌧1(xs,⌧1), F
Q
s,⌧2(xs,⌧2), F

Q
s,⌧3(xs,⌧3)), and where the components

of xs will be very likely correlated. In our simulation exercise we assume
that a year has 252 trading days (prices) and that 3 (6 and 12) months
correspond to 63 (126 and 252) trading days respectively.

A uniform marginal distribution of the PITs, assuming that they are not
autocorrelated, indicates that there is no need for a calibration function.
A uniform marginal distribution of the PITs, assuming that they are
autocorrelated, does not necessarily say anything about the need for a
calibration function. There could be cases where the PITs are extremely
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autocorrelated, and yet display a perfect uniform histogram leading to the
wrong conclusion that both the risk neutral and physical measures are both
identical.

The source of autocorrelation of the PITs comes from the rolling nature
of the data. Each period t we obtain a new PIT which is the outcome of
the physical process under a given maturity. Since, for a given maturity
⌧ , we will be producing ⌧ ⇥ 252 overlapping periods (with di↵erent levels
of overlap), these periods will share common contributions to each of those
PITs. For example, a 3 month PIT with reference point today and maturity
in 65 business days (3 months) will share 64 business days in common with
another PIT with reference point tomorrow and maturity 65 days from
tomorrow. This generates an artificial autocorrelation in the PITs that
is embedded in any overlapping data. Classical approaches include a mere
thinning of the data (which we do in our simulation exercises) to take only
non-overlapping periods. However, this approach is especially penalizing
on the longer maturities. For example, for maturities of a year, traditional
approaches will only collect one data point per year. Our approach is more
general, since it takes into account in the modelling the di↵erent sources
of correlation between the PITs through the �-MRF approach. For two
given PITs (A,B), for which the data driving them is represented by the
combination of the starting points tA, tB, and the maturities ⌧A, ⌧B, the
overlapping amounts of information contained in the physical process is the
intersection of [tA, tA + ⌧A] \ [tB, tB + ⌧B] This information is processed
naturally through the �-MRF approach, which takes into account the two
causes of autocorrelation.

We apply our Bayesian �-MRF calibration model with the following
hyper parameter settings ↵ = 0, � = 0, s2j = 10, g2j = 10, s2 = 100, and
g = 100. We apply the proposed MCMC algorithm in order to approximate
the posterior quantities of interest. In MCMC algorithm we consider 5,000
iterations after converge (that is detected after about 2,000 burn-in iterations
by applying the Geweke (1992) convergence diagnostic test statistics). The
scale ⇤ of the proposal distribution of the MH step for generating ✓ from
q has been setted in a way to achieve a average acceptance rates between
0.5 and 0.7 for the two MH algorithms (steps 1 and 2) which is a good
sign of e�ciency for most MCMC algorithms, as suggested, for example, by
Rosenthal (2011).

With regards to Table (1):

• ↵j are the autoregressive parts of the MBRF (time factor)
representing the time-dependence.

12



• �j are the parameters linking the di↵erent maturities (maturity factor)
Representing the cross-maturity dependence.

It seems that the autocorrelation over time decreases as the maturity
increases. This can be seen in the value of the alphas. Also, �

1

and �

2

represent the neighboring maturities correlation parameters before and after
respectively. So �

12

represents the correlation parameters between maturity
1 and maturity 2, while �

12

represents the correlation parameter between
maturity 2 and maturity 1. Furthermore, it seems that the panels c and
d are pooling across maturities. This is interesting, because it assumes the
same autoregressive structure over time for the PITs across their maturities.
However, note that the values of gamma are extremely di↵erent
we need to make sure we interpret correctly the meaning of this
parameter lets discuss this bit.

The results of the calibration exercises are given in Tab. 1 and Fig. 1.
It is important to note the following salient features:

• The autoregressive coe�cient is significant at all maturities. The
proximity parameter is significant only for the last maturity. The value
of the precision parameter increases with the maturity. Fig. 1 shows
the non-calibrated and calibrated PITs. Fig. 2 shows the predictive
density and the calibrated predictive for the prices at time t = 504
using the implied densities available at time t�⌧j for di↵erent j (rows)
and di↵erent wrong values of the volatility parameter � (columns).

• We also consider a more parsimonious model, where we assume �kj =
�k and ↵kj = ↵k for all j = 1, . . . ,M . The results are given in Tab. 1.

5 An application to the Euro currency

We apply our methodology to Over-the-Counter annualized implied
volatilities on the Euro currency for di↵erent tenors (one month, two months,
and six months), spanning from the 01/01/2010 until 01/04/2013. For the
computation of the risk neutral densities for the Euro, we applied the same
procedure consisting of first fitting a spline to the implied volatility for
each tenor separately as in Panigirtzoglou and Skiadopoulos (2004); Vergote
and Gutiérrez (2012), in order to transform back to the option price space
and take the second derivative to yield the risk neutral density2. For an

2
A more thorough description of how to estimate the risk-neutral density obtained in

our work is given in our appendix.
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Panel (a) (� = 0.1)
⌧j , j = 1 ⌧j , j = 2 ⌧j , j = 3

✓ij ✓̂ij CI ✓̂ij CI ✓̂ij CI
�j 1.42 (1.01,1.51) 2.82 (2.79,2.93) 13.46 (13.40,13.64)
↵

0j -0.32 (-0.44,-0.25) -0.55 (-0.64,-0.46) -1.09 (-1.15,-1.02)
↵

1j 0.43 (0.32,0.48) 0.51 (0.35,0.61) 0.32 (0.23,0.42)
�

1j 0.11 (0.01,0.21) 0.16 (0.04,0.26)
�

2j 0.18 (0.06,0.27) 0.03 (0.01,0.15)

Panel (b) (� = 0.2)
⌧j , j = 1 ⌧j , j = 2 ⌧j , j = 3

✓ij ✓̂ij CI ✓̂ij CI ✓̂ij CI
�j 3.75 ( 3.73, 3.81) 7.01 (6.67,7.23) 14.03.88 (13.83,14.16)
↵

0j -0.24 (-0.34,-0.11) -0.11 (-0.19,-0.03) -0.23 (-0.29,-0.18)
↵

1j 0.37 (0.23,0.47) 0.30 (0.24,0.41) 0.47 (0.32,0.58)
�

1j 0.37 (0.27,0.43) 0.05 (-0.09,0.21)
�

2j 0.13 (0.03,0.21) -0.02 (-0.09,0.08)

Panel (c) (� = 0.1)
⌧j , j = 1, 2, 3

� 99.4 (42.7,171.81)
↵

0

0.17 (-5.25,7.19)
↵

1

-0.02 (-8.37,5.21)
�

1

-0.74 (-6.79,5.98)
�

2

0.56 (-5.58,7.55)

Panel (d) (� = 0.2)
⌧j , j = 1, 2, 3

� 95.3 (49.57,159.66)
↵

0

1.55 (-4.43,7.15)
↵

1

-0.48 (-5.8,4.17)
�

1

-0.37 (-5.81,4.27)
�

2

-0.04 (-7.48,7.77)

Table 1: Posterior mean (✓̂i) and 95% credibility intervals (CI), for the
parameters of the �-MRF. The non-calibrated predictive models with � =
0.1 (panels (a) for the hierarchical and (c) for the pooled model) and � = 0.2
(panels (b) for the hierarchical and (d) for the pooled model), when the true
vale of the scale parameter is � = 0.15.
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Figure 1: Non calibrated and calibrated risk neutral distribution for di↵erent
maturities (rows) and volatility levels (columns).
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Figure 2: Non calibrated (dashed line) and calibrated (solid line) risk neutral
distribution and price level (vertical dotted line) at last point of the sample,
i.e. t = 504, for di↵erent maturities (rows) and di↵erent volatility levels
(columns).
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extensive review on how to extract risk-neutral densities from option prices
with Matlab code included, please see Fusai and Roncoroni (2000). We can
apply this methodology both for the case where we assume that each tenor
has its own calibration function and also for the case where we assume that
there is a single calibration function that works across several tenors by
setting �kj = 0 in the specification of µjt.

Figure 3 show the time series (left column) and the histograms (right
column) of the di↵erent PIT series. Even though most histograms of the
time series of the PITs look very uniform, an interesting feature is that the
longer the tenor, the stronger is the autoregressive component.

We further display below the risk neutral densities estimated on the
01/04/2013 for the di↵erent maturities as well as their physical densities
computed by applying the calibration function to each of the risk-neutral
densities. We apply our beta MRF calibration model with the prior and
MCMC setting used in the simulated experiments (see previous section).
The results are given in Fig. 4. As it results from panel (a)
in Tab. 2, we found evidence of autocorrelation component
(coe�cient ↵

1j) and of dependence across neighbouring maturities
(coe�cients �ij). From panel (b) of the same figure one can see
that the value of the autoregressive coe�cient decreases when
thinning (thinning factor 100/15) is applied to the PITs time series
in order to reduce the dependence between the samples.

6 Conclusion

This paper provides an extension in the context of random fields of beta
models existing in the literature and builds upon the Bayesian autoregressive
model by Casarin et al. (2012). We have provided a new modelling
framework using both the derivative and spot markets for the term structure
of the implied probability, which accounts for the possible dependence
between pits at di↵erent maturities and di↵erent dates for a given maturity,
therefore allowing borrowing of information between the di↵erent tenors
for both the risk-neutral and the physical measures. We also provide a
proper inferential Bayesian framework that allows us to include parameter
uncertainty in the density calibration functions, and therefore in the physical
densities.

The literature on density forecast and the construction of calibration
function has seen a renewed interest since Fackler and King (1990). The
use of densities for predicting quantities of interest is now widely used
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Figure 3: PIT time series (first column) and histogram (second column).
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Figure 4: Non calibrated (solid line), perfectly calibrated (dotted line), and
�-MRF calibrated (gray dashed line) risk neutral distributions for the three
di↵erent maturities (rows): one, two and six months. In each plot, gray
areas represent the 95% HPD region.
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Panel (a) (Original data sample)
⌧j , j = 1 ⌧j , j = 2 ⌧j , j = 3

✓ij ✓̂ij CI ✓̂ij CI ✓̂ij CI
�j 2.24 (2.14, 3.01) 2.78 ( 2.76, 2.98) 3.55 ( 3.42,3.97)
↵

0j -0.04 (-0.16, 0.09) -0.06 (-0.21, 0.07) -0.08 (-0.24, 0.04)
↵

1j 0.15 (0.06, 0.24) 0.31 ( 0.14, 0.45) 0.31 (0.21, 0.52)
�

1j 0.14 ( 0.04, 0.28) 0.13 (-0.01, 0.26)
�

2j 0.17 (0.04, 0.28) -0.01 (-0.2, 0.01)

Panel (b) (Thinned data sample)
⌧j , j = 1 ⌧j , j = 2 ⌧j , j = 3

✓ij ✓̂ij CI ✓̂ij CI ✓̂ij CI
�j 2.63 ( 2.52,2.78) 2.57 ( 2.34,2.71) 3.52 ( 3.48,3.62)
↵

0j 0.03 (-0.14,0.23) 0.04 (-0.15,0.18) 0.02 (-0.17,0.21)
↵

1j 0.05 (-0.25,0.21) 0.10 (-0.04,0.33) 0.11 (-0.02,0.23)
�

1j 0.06 (0.01 ,0.26) 0.09 (-0.01,0.34)
�

2j 0.07 (-0.10,0.32) 0.03 (-0.14,0.23)

Table 2: Posterior mean (✓̂i) and 95% credibility intervals (CI), for the
parameters of the �-MRF. The non-calibrated and �-MRF calibrated
predictive pits empirical distribution function for original data (panel (a))
and thinned data (panel (b)), with thinning factor 100/15.
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in many contexts (Vergote and Gutiérrez, 2012; Vesela and Gutiérrez,
2013) . Modelling the time evolution of the predictive densities and the
relationship between densities from many sources is a challenging issue.
For example, when reconstructing the calibration function there cannot be
any overlapping time intervals so that the pits are independent in order
to estimate the beta calibration function as explained in Fackler and King
(1990) and later used in (Vergote and Gutiérrez, 2012; Vesela and Gutiérrez,
2013). Using independent pits has the drawback of requiring a lot of data
to have a reliable calibration function, allowing to use 4 data points per
year for 3 month maturity densities, and 2 data points per year for 6 month
maturity risk neutral densities. Our methodology can use data from every
day in a rolling window fashion since it can adapt dependent pits.

Further research will include adapting our methodology to other indexes
as the Euribor, stock, commodity and fixed income indexes by interpolating
the risk neutral densities for di↵erent constant maturities from fixed expiry
contracts as done in (Vergote and Gutiérrez, 2012).
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A Risk Neutral density estimation

Our real data consists of the daily implied annualized volatility on the
Euro dollar for di↵erent expirations such as one week, one month, two
months, three months and six months. The full data consists of the closing
snapshots at the end of the London Business day for spot, forwards and
implied volatilities for the period of the 1/1/2010 to the 23/4/2013. We
follow Campa et al. (1997); Vergote and Gutiérrez (2012) and transform
the option prices (y-axis) and strikes (x-axis) to the sigma (y-axis) and
delta (x-axis) space in order to fit a cubic smoothing spline to the volatility
smile. The reason for working in the sigma-delta space instead of the regular
option price space is that undesired noise in the option data is introduced
through high liquidity and transaction volumes which then makes di�cult
the interpolation of option prices. By fitting the implied volatility (sigma-
delta) instead of the option prices directly, one is able to circumvent the
latter problem of the noise in the option data by Shimko (1993); Hutchinson
et al. (1994); Malz (1997); Ait-Sahalia and Lo (1998); Engle and Rosenberg
(2000); Bliss and Panigirtzoglou (2002).

More specifically, and using the same notation as in Vergote and
Gutiérrez (2012), the optimal cubic smoothing spline of the implied volatility
is the one that minimizes the following function:

min�
nX

i=1

!i(�i � ˆ
�(⇥)i)

2 + (1� �)

Z
1

0

g

00
(�,⇥)d� (21)

where � is the partial derivative of the Black and Scholes option call price
with respect to the underlying, �i, ˆ

�(⇥), and !i =
⌫
iP
n

i

⌫
i

are the observed

volatility, fitted volatility, and weight of observation i, together with its
Greek Black and Scholes vega ⌫. respectively. Furthermore ⇥ represents
the matrix of polynomial parameters of the cubic spline, g() is the cubic
spline function. The value for � used is equal to 0.99. It is worthwhile
noting that the BlackScholes formula is used solely to convert the option
prices into/from their implied volatilities, in order to make the smoothing
more e↵ectively. This assumption does not assume that we are assuming
the Black and Scholes pricing formula is the correct one, but only merely a
way to make the smoothing more e↵ective in the interpolation3.

3
The function csaps performs cubic smoothing spline interpolation in Matlab
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