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Abstract

We introduce an econometric method to detect and analyze events of flight-to-quality by financial

institutions. Specifically, using the recently proposed test for the detection of Granger causality in risk

(Hong et al. 2009), we construct a bipartite network of systemically important banks and sovereign

bonds, where the presence of a link between two nodes indicates the existence of a tail causal relation.

This means that tail events in the equity variation of a bank helps in forecasting a tail event in the

price variation of a bond. Inspired by a simple theoretical model of flight-to-quality, we interpret links

of the bipartite networks as distressed trading of banks directed toward the sovereign debt market and

we use them for defining indicators of flight-to-quality episodes. Based on the quality of the involved

bonds, we distinguish different patterns of flight-to-quality in the 2006-2014 period. In particular, we

document that, during the recent Eurozone crisis, banks with a considerable systemic importance have

significantly impacted the sovereign debt market chasing the top-quality government bonds. Finally,

an out of sample analysis shows that connectedness and centrality network metrics have a significant

cross-sectional forecasting power of bond quality measures.
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1 Introduction

The surge of market distress and the rapid spread of uncertainty may lead a significant number of market

players to rethink their priorities and investment strategies triggering a rebalancing of their portfolio toward

safer type of assets (Caballero and Krishnamurthy, 2008). When investors have similar portfolios, coordi-

nated rebalancing might lead to massive sales and purchases of assets (Cont and Wagalath, 2013, 2014). In

the presence of finite liquidity, these “fire sale” episodes can lead to sudden and large price movements, with

a consequent significant increase of financial systemic risk. In particular, in periods of financial turmoil,

financial investors try to liquidate risky assets and to purchase safer and less risky ones. Episodes of this

type are commonly referred to as “flight-to-quality” and can play a prominent role in the propagation and

deepening of financial crises. Thus, the ability of identifying and possibly anticipating (at least partially)

such phenomena is of great importance also in the context of early-warning and monitoring of systemic risk

(Demirgüç-Kunt and Detragiache, 1998; Kaminsky and Reinhart, 1999; Harrington, 2009; Scheffer et al.,

2009; Barrell et al., 2010; Duttagupta and Cashin, 2011; Kritzman et al., 2011; Allen et al., 2012; Arnold

et al., 2012; Bisias et al., 2012; Scheffer et al., 2012; Merton et al., 2013; Oet et al., 2013). Moreover the

identification of flight-to-quality episodes is of great importance as a measure of the market perception of

the quality of the assets.

In empirical studies of systemic risk there are two possible approaches. The first one is characterized by the

adoption of proprietary data on portfolio compositions, exposures, trades, etc., data typically unavailable or

partially available only in central banks. The second approach makes use of econometric analyses of publicly

available market data (e.g. prices and/or volumes) in order to identify, characterize, and possibly forecast

episodes of systemic risk. In this paper we follow the second approach to identify flight-to-quality episodes,

focusing our attention to the relation between banks and sovereign bonds in the period 2006-2014.

Our analysis starts from the simple consideration that, prior and during a crisis event, systemically

relevant banks are likely to experience large drops in their equity values. Accordingly, crises are identified

by events originated in the left-tail of the equity log-returns distribution of global systemically important

banks1. Since big market players are usually levered institutions pursuing a target or pro-cyclical leverage2

strategy (Adrian and Shin, 2010, 2014; Greenwood et al., 2015) and since sovereign debt securities form a

considerable fraction of banks’ total assets, a portfolio rebalancing of a bank will most likely involve the

trading of large quantities of sovereign bonds. Due to market impact and assets’ illiquidity, large movements

of bond prices (and hence of bond yields) are expected as a consequence of the flight-to-quality behavior of

banks triggered by the large equity drop. Risk exposure can, in fact, be reduced by selling risky assets and

moving capitals toward safer investments. Hence, large sovereign bond yield variations tend to occur after

periods of financial distress in which many large banks are hit by dramatic losses in their equity capitals.

As a motivation for the proposed econometric method, first we present a stylized model of flight-to-

quality inspired by the theoretical models of Corsi et al. (2013) and Lillo and Pirino (2015) (which are, in

turn, inspired by previous works by Adrian and Shin, 2010, 2014; Greenwood et al., 2015, among others) of

the feedback between equity of institutions and price of assets. Specifically we show, by means of a simple

portfolio optimization model, that if two types of assets are available in the economy, a safe one and a risky

one, a VaR-constrained profit-maximizer will react to a drop of the equity by purchasing the safe asset and

selling the risky one. In fact, the model predicts that equity drops of financial institutions will simultaneously

increase the demand of safe assets and the supply of riskier assets. Because of market impact, this in turn

drives an upward (downward) movement of price of safe (risky) asset. In order to econometrically identify

1In particular, we rely on the definition of G-SIBs defined by Basel III regulatory framework. For more detail, see http:

//www.bis.org/bcbs/basel3.htm.
2In periods of extraordinary distress and uncertainty, de-leveraging is a common strategy also for financial institution not

actively managing their leverage, see (Chen et al., 2014).
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this chain of events from market prices, we propose to use Granger-test for tail dependence of Hong et al.

(2009). Applied to the banks-sovereign bonds relation, the test identifies when a tail event in the distribution

of the equity log-return of a bank helps forecasting a tail event in the distribution of the yield variations of

a given sovereign bond.

Considering a set of banks and sovereign bonds in a systemic perspective, the information on flight-

to-quality episodes can be described by a bank-asset bipartite network3 where the link between a bank

and a bond indicates the existence of Granger causality in tail. More precisely, we define connectivity

and centrality measures of the Granger-causality networks that have a simple economic interpretation in

terms of indicators of distressed selling and distressed buying. In addition, we adopt country ratings from

Standard & Poor’s (S&P) to discriminate between “good” and “bad” sovereign debts. We can thus identify

periods when a significant amount of distress selling has hit the class of “bad” bonds while a significant

amount of distress buying was simultaneously hitting the “good” ones. This double effect corresponds to

a natural characterization of flight-to-quality, where the general distrust pushes investors toward low-risk

assets. Our proposed flight-to-quality measure possesses several appealing features: (i) it is computed from

standard equity and bond (daily) market prices; (ii) it is able to identify different patterns of flight-to-quality

behavior; (iii) allows the derivation of several connectedness and centrality network metrics having significant

cross-sectional forecasting power for the bond quality.

Our paper has been particularly inspired by two important works belonging to two different streams of

the literature which we attempt to connect: the paper of Beber et al. (2009) on flight-to-quality and the

paper of Billio et al. (2012) on networks of Granger-causality.

The analysis by Beber et al. (2009) sheds insightful light on how liquidity and quality are chased in the

market. Unusual capital flows are used in Beber et al. (2009) to proxy flights, both to liquidity and to quality.

They document that investors care of both liquidity and quality, but they do it at different times. More

precisely, in period of market distress characterized by a high level of uncertainty, investors require liquidity

rather than quality. Besides, liquidity plays a non-trivial role even in the pricing of bonds during period of

increased uncertainty. Defining an econometric measures of flight-to-quality based on easily available daily

market prices, considerably reduces the data requirements in our approach since the detailed information

on the order flow is now inferred from data. This allow us to considerably extend the time span of our

analysis compared to the one in Beber et al. (2009) considering the equity and bond market developments

from the beginning of 2006 to February 2014. As a consequence, our analysis profits from the presence of two

important periods of financial distress. Complementing the results of Beber et al. (2009) we document that

investors (in our case systemically important banks), do chase for quality during financial crisis, but they

do it in different ways: in some cases, such as during and after the Lehman crisis, they simply chase quality

by buying sovereign debt of any type, while in others, such as during the European sovereign debt crisis,

they require only top-quality sovereign debt, i.e. the flight-to-quality occurs exclusively toward AAA-rated

sovereign bonds.

Networks of Granger-causality have been introduced in systemic risk studies by Billio et al. (2012) to

identify and quantify periods of financial turbulence, characterized by abnormal levels of Granger inter-

connectedness among equities of hedge funds, banks, broker/dealers, and insurance companies. Our paper,

although being inspired by the analysis of Billio et al. (2012), moves away from it in at least two respects:

first, we adopt a bipartite network of equities and bonds, a choice dictated by the will of investigating the

effect of crises on sovereign debt and, second, we adopt the Granger-causality test in the tail by Hong et al.

(2009), since we believe that it is suited to describe events pertaining to a crisis, hence of extraordinary

nature. Moreover, the test is able to identify the “sign” of the causality, in the sense that it can distinguish

3A bipartite network is a graph whose vertices can be divided into two disjoint sets such that every edge connects a vertex
in one set to one in the other set.
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if an event in the right or in the left tail of the caused variable is anticipated by an event in one of the two

tails of the causing variable.

We adopt four additional definitions of bond quality based on either the correlation between CDS spreads

and the bond yields or the bond yield volatility and the yield spreads, defined as the difference between a

government bond yield and the German bond yield at the same maturity. This gives us the possibility of

having a time-varying measure of quality independent from the S&P rating of the country and, hence, to

test the out-of-sample forecast performances of the newly defined network centrality measures. We find

that during period of crises, both for the 2007 but especially for the Eurozone crisis, the Granger centrality

measures show a significant forecasting power on the bond quality measures.

It is important to stress that the method we present is more general than the specific application to

flight-to-quality episodes of systemically important banks toward sovereign bonds and can be applied to

other financial institutions (e.g. mutual funds, hedge funds, etc.) and other asset classes (e,g, equities,

corporate bonds, etc.). In particular it could be used to identify episodes of fire sale in the financial market,

not necessarily related to flight to quality.

It is however worth remembering that the econometric evidence of a tail causality does not necessarily

implies that the bank has executed a distressed selling (or buying) on the corresponding bond. We do not

observe directly trading activity and thus our approach should be interpreted with all the limitations of

the original causality by Granger (1969). In other words, our method must be interpreted with an “as if”

approach. Nevertheless, the presence of tail causality between the time series represented by two nodes is

an important indicator of the propagation of risk between them.

The paper is organized as follows: Section 2 is dedicated to outline the motivational portfolio optimization

model. The main implication of the model is summarized in Proposition 1, whose proof is given in Appendix

A. In Section 3 we present the Granger-causality in tail as our method to identify econometrically portfolio

rebalancing and in Section 4 we present the investigated dataset. In Section 5 we describe the structure of

the bipartite network of tail causality and in Section 6 we present our definitions of flight-to-quality metrics

and we study their dynamics. Section 7 describes the out of sample forecasting tests for the quality of the

bond based on the properties of the bipartite network. Finally, in Section 8 we draw some conclusions.

2 A simple model of flight-to-quality

As anticipated in the Introduction, the first contribution of the present paper is a portfolio optimization

model of a simplified economy in which an investor can choose between two types of assets: a safe one with

low expected return and a risky one with high expected return. In line with the recent theoretical and

empirical literature on bank behavior (Dańıelsson et al., 2004; Brunnermeier and Pedersen, 2009; Adrian

and Shin, 2010; Duarte and Eisenbach, 2013; Adrian and Shin, 2014), financial institutions are confronted

with a Value at Risk (VaR) type of constraints. The final purpose is to understand the consequences of such

a VaR constraint on the decision making process of a profit maximizer.

Consider then an investor who can invest only into two assets a and b. We proxy riskiness of the

investments by their volatilities. Hence let σa and σb be the volatilities of, respectively, asset a and b, and

assume (without loss of generality) that σa < σb. Assuming positive risk premia and denoting by µa (resp.

µb) the expected return of asset a (resp. b) we have that µa < µb. Let ω be the percentage of total asset

invested in the safe asset a and 1−ω the corresponding percentage invested in the risky asset b. The investor

has to find the optimal total asset A and the optimal ω that solve
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max
A,ω

Aµ′ω

s.t. αA
√
ω′Σω ≤ E,

(1)

where E is the total equity provided to the investor, α is a parameter that determines which quantile4 of

the VaR is used in the constraint, the matrix Σ is the variance-covariance matrix of the two assets

Σ =

(
σ2
a σab

σab σ2
b

)
,

the two vectors µ and ω are, respectively, the vector of asset returns and the vector of portfolio weights

µ =

(
µa

µb

)
, ω =

(
ω

1− ω

)
,

and, finally, the notation ω′ indicates the transpose of ω. Note that we are not imposing ω > 0, since a

short-position may be profitable for the investor. Under this general setting we are able to prove the following

Proposition 1 A profit-maximizer that allocates the available resources according to (1) always reacts to

equity drops with a flight-to-quality. In formula

dω

dE
< 0. (2)

Proof. See Appendix A.

The implications of the model are summarized by inequality (2). During periods of financial distress

(dE < 0) the VaR-constrained investor will simultaneously purchase safe investments (dω > 0) and sell

the risky ones (d (1− ω) < 0). In the context of the bi-partite network of systemically relevant banks and

sovereign bonds analyzed in this paper, we expect that, during financial crises, a simultaneous distressed

selling of risky bonds is accompanied with a massive purchase of good quality bonds. We stress that, in

the model presented above, the investor is allowed to choose the optimal A. Hence, as a compensation of

the equity drop, the investor could in principle choose to solely reduce the optimal total asset A, leaving

the portfolio allocation ω untouched. In practice, the total asset is reduced by the same amount of the

equity drop5 together with a reduction of the exposure to the risky bond. Simply put, the flight-to-quality

phenomenon is not affected by the possibility of choosing the optimal A.

The model helps understanding that an equity drop of a financial institution will lead to a liquidation

of risky assets and purchases of safe assets. Because of finite liquidity, this excess demand/supply will move

upward (downward) the price of safe (risky) assets. It is therefore natural to search, in market data, for

dependencies between extreme movements of the equity of financial institutions and extreme movements of

asset prices, as an indication of flight-to-quality episodes. This is the focus and the main goal of the next

Section.

4By fine-tuning of the constant α a supervisory authority may decide to relax or to tighten the VaR constraint and, as a
consequence, to to reduce or to increase the maximum market risk of the bank.

5This is immediate since, in obtaining inequality (2), we are assuming an almost constant debt (see Adrian and Shin, 2010).

5



3 Tail Granger-causality for identifying distressed portfolio rebal-

ancing

In this paper, in order to identify distressed portfolio rebalancing, we adopt a purely econometric approach

that only requires standard time series of banks’ equities and sovereign bond yields. This choice has the ad-

vantage of being implementable at frequencies from moderate to high (weekly, daily or even more, depending

on the availability of data) without requiring any not publicly available dataset, such as order flow data,

which are notoriously very hard to obtain. As anticipated in the introduction, we look for those chains of

events in which a large negative equity drop of a systemically important bank causes a significant variation

(positive or negative) of a given sovereign bond yield. We adopt the statistical test proposed by Hong et al.

(2009), which is summarized below. The final outcome of the econometric machinery is a bi-partite network

of Granger causalities in tail (or risk). We interpret the presence of a link in such network as an indirect

evidence of a distress buying or selling of the bond by the bank with the interpretative precaution mentioned

in the Introduction.

The Granger-causality test for tail dependence of Hong et al. (2009) works as follow. Given two time

series {Y1,t}Tt=1 and {Y2,t}Tt=1 (think at the former as the series of bond yield variations and at the latter as

the series of equity log-returns), the first step of the procedure is to identify which are the extreme events in

the history of both. For this purpose, following the approach of Hong et al. (2009), we estimate a parametric

model for the Value-At-Risk of {Y1,t}Tt=1 and {Y2,t}Tt=1. For the parametric model, as well as the numerical

routines, we borrow from the popular approach developed by Engle and Manganelli (2004). For more detail

about the VaR model and the corresponding parameter estimates we refer to Appendix B. The outcome of

the Engle and Manganelli (2004) procedure is a parametric estimate of the conditional VaR series
{
V

(α)
i,t

}T
t=1

defined in the standard fashion

Prob
[
Yi,t ≤ −V (α)

i,t | Ωt−1

]
= α, i = 1, 2,

where Ωt denotes the information available at time t and α defines the tail of the distribution. We choose

α = 10% as a trade-off between the necessity of focusing on extreme events and that of having a sufficiently

high number of observations. Once the two conditional VaR series have been estimated we can apply the

one-way Granger-causality test by Hong et al. (2009). The test compares the null

H0
1 : Prob

[
Y1,t < −V (α)

1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
= Prob

[
Y1,t < −V (α)

1,t

∣∣∣ {Y1,t−k, Y2,t−k}t−1
k=1

]
(3)

against the alternative

HA1 : Prob
[
Y1,t < −V (α)

1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
6= Prob

[
Y1,t < −V (α)

1,t

∣∣∣ {Y1,t−k, Y2,t−k}t−1
k=1

]
. (4)

The interpretation of H0
1 and H1

1 is straightforward. If the null hypothesis is rejected with some confidence,

in the time interval [tstart, tend], this means that the information of the occurrence of a large event in Y2,t

during [tstart, tend] has significantly impacted the probability of a future occurrence of a extraordinary event

in Y1,t. Note that the conditioning information includes at most instant t − 1, while the conditioned event{
Y1,t < −V (α)

1,t

}
is occurring at t, whence the genuine causality of the approach. Notice also that in the test

we are not considering simultaneous dependencies.

Define the hit series as Zi,t ≡ 1{
Yi,t<−V (α)

i,t

} for i = 1, 2 and t = 1, ..., T , and let ρ̂ (j) be the sample

cross-correlation function between {Z1,t}Tt=1 and {Z2,t}Tt=1 at positive lag j, i.e. consider
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Ĉ (j) = T−1
T∑

t=1+j

(Z1,t − α1) (Z2,t−j − α2) , with j = 1, 2, ..., T − 1,

where αi = T−1
∑T
t=1 Zi,t. The sample cross-correlation function is thus written as

ρ̂ (j) =
Ĉ (j)

S1 S2
,

where S2
i = αi (1− αi). Hong et al. (2009) show that, under H0

1

Q1 (M) =
T
∑T−1
j=1 k

(
j
M

)2
ρ̂ (j)

2 − C1,T (M)

D1,T (M)
1
2

D→ N (0, 1)

when both the number of observation T → ∞ and the bandwidth M = c T ν → ∞ (c > 0, 0 < ν <
1
2 ), where k (x) a suitable kernel function6, and C1,T (M) and D1,T are known constants. Notice that in

the previous equation we consider only positive values of the lag j, i.e. lagged correlation between past

observations of Z2,t and future observations of Z1,t (since we are testing the causal relation of the second

variable on the first one).

Under HA1 it is

M
1
2

T
Q1 (M)

p→ 1(
2
∫∞

0
k (z)

4
dz
) 1

2

∞∑
j=1

ρ̂ (j)
2
, (5)

which implies that the test has asymptotic unit power at any confidence level. If Q1 (M) > cβ , where cβ

is the β-quantile of a Normal distribution function with zero mean and unit standard deviation, then we say

that {Y2,t}Tt=1 Granger-causes the series {Y1,t}Tt=1 in the tail (or in risk). Throughout the analysis we choose

β = 95% and hence cβ = 1.6449. Moreover, following the small-sample properties of the test as reported by

Hong et al. (2009), we set M = 5 for the value of the bandwidth parameter.

Since our interest is in exploring causal relationships between equities and bonds, we have to specify

both the direction of causality and which tail (left or right) of the two distributions are involved in the

test. In this paper, we will limit our analysis to causality links between the left tail (losses) of the bank

equity distribution and both the left and right tails of bond yield distribution. The economic interpretation

is straightforward. In the former case, a negative shock in equity capital for institution j is causing large

negative bond yield variations for country i, and this is interpreted as if the bond is being bought. Vice

versa, in the latter, a negative shock in equity capital is causing a sudden increase of bond yields, and this is

interpreted as a distressed selling against the corresponding sovereign debt. For the sake of readability, we

will denote a distressed buy of bank j of bonds i as (Ej =⇒ BBuy
i ) while a distress selling bank j of bonds i

as (Ej =⇒ BSell
i ).

For completeness and in order to compare our results with those of Billio et al. (2012), we also perform

standard Granger (1969) causality tests, whose theory is briefly summarized in Appendix D. In this case, if

the j-th equity log-returns series Granger-causes the i-th series of sovereign bond yield variations, we write

(Ej =⇒ Bi). Contrary to Hong et al. (2009), the standard Granger (1969) causality tests only controls for

causality between the central moments of the pair of distributions under analysis.

Since we aim at implementing a dynamical analysis, we paid particular care in the construction of both

the VaR measure and the Granger-causality test to fully preserves causality using, at any point in time,

only past information. Appendix B describes in detail the solution adopted. It is important to mention that

we circumvent contingent problems generated by the asynchronicity of the data by sampling all time series

6In our analysis we adopt the Daniell kernel k (x) = sin (π x) /x.
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every two-days, hence bond yield variations and equity log-returns must be thought as variations on a time

scale of two days.

4 The Dataset

Our dataset is composed of j = 1, ..., 33 equities of global systemically important banks (G-SIBs) defined by

Basel III regulatory framework and i = 1, ..., 36 sovereign debt bonds (with a maturity of 5 years) of different

countries in America, Europe and Asia. We indicate with γi,t the nominal 5-years maturity bond yield of

country i at day t. For each country i we have also at our disposal the daily time series of five-years maturity

CDS spread, a quantity that we indicate as Si,t henceforth. Detailed informations, along with Tables with

summary statistics, on the three blocks of data are provided, for the sake of readability, in Appendix C.

Finally, we mention that in Section 7.1, in order to properly define the quality measures based on the

correlation between CDS spreads and bond yields, we require a proxy for the risk-free interest rate r. For

each bond, depending on the currency, we use the zero-coupon curve of the corresponding maturity and

currency derived by a bootstrapping procedure7.

5 Bipartite networks of tail causality

In order to build a network of Granger-causality in the tail, we construct a sequence of time-windows of

three years length 8. For a given time-window t, we compute the networks of the significant causal links

in the tail
(
Ej =⇒ BSell

i

)
t

and (Ej =⇒ BBuy
i )t, where now the additional subscript t is indicating that the

causal networks are time-dependent since they are computed using observations prior to the end of the t-th

time-window9. In addition, we also compute the network from the standard Granger (1969) causality test

(Ej =⇒ Bi)t.

Six snapshots of the equity-bond bipartite network of tail risks are shown in Figure 1 (for the sake of

exposition the networks based on the Granger (1969) test are omitted). Left and right columns of Figure 1

refer to the two types of tail causal relationships investigated. More precisely, a link in the left column is a

(Ej =⇒ BBuy
i )t causal link, while in the right column it is a (Ej =⇒ BSell

i )t causality. When hit by a causal

link, bonds are colored according to the S&P rating attached to the bond in the corresponding time-window

(see caption for more details). Finally, we indicate the degree of each node of the bipartite graph in brackets

(when different from zero).

The three periods displayed are selected with a simple criterion. The first one (first row) refers to the

period 2003-2006 and thus it is not associated with any financial crisis. Interestingly the network shows a

relatively small number of active links. The other two refer to 2006-2009 (middle row) and 2009-2012 (bottom

row) and thus are associated with two phases of the financial distress, namely the events around the Lehman

default and the Eurozone sovereign crisis. In these cases the number of causal links is significantly higher.

The purpose is to give a visual perception of the differences in the topology of the network between normal

and crisis periods. Specifically, during episodes of financial turmoils, it is evident that (Ej =⇒ BBuy
i )t causal

links are preferentially directed toward AAA bonds, while (Ej =⇒ BSell
i )t causal links are mainly oriented

toward bonds with rating ranging from AA to BB. This evidence anticipates the results of Section 6, where

7All the zero-coupon curves are elaborated, via a bootstrapping procedure representing the best-practice in the industry, by
a dedicated desk of UniCredit Group.

8The choice of three years balances the trade-off between the power of the Granger test (as reported in the simulation study
of Hong et al., 2009) and the need of localizing periods of financial distress.

9Since each time series (either on the equity and on the bond side, see Tables 4 and 5) starts at a different day, for any
equity-bond pair we check if the overlap of the two time series contains more than 10 observations, which in the two-days
subsampled grid roughly corresponds to one-month. However, in the great majority of cases, we get almost a full overlap which
corresponds to 390 observations (three years of 2-working-day sub-sampled observations).

8



DEXB(1)

CS

UBS

CBK(1)

DB(1)

SAN

BBVA(4)

ACA(2)

GLE(1)

BNP(1)

RBS(2)

STAN(7)

HSBC

LLOY

BCS(2)

UCG

NDA(2)

RF

COF

GS

JPM

AXP(3)

BBT(1)

BAC(1)

BK

C

FITB

MS

PNC(2)

STT

STI

USB

WFC(1)

Australia

Bulgaria

Canada (4)

Switzerland

Czech Rep. (1)

Denmark

Austria

Belgium (1)

Croatia (1)

Cyprus (2)

Finland

France

Germany (1)

Greece (2)

Hungary (1)

Ireland (3)

Italy

Netherlands (2)

Poland

Portugal

Slovenia (4)

Spain (1)

Slovakia (2)

United Kingdom (1)

Hong Kong

Japan (1)

Malaysia

Norway

New Zealand

Romania

Sweden (2)

Singapore

Turkey (3)

Russia

United States

Venezuela

From 03−Jan−2003 to 30−Dec−2005

DEXB(6)

CS(4)

UBS(2)

CBK(1)

DB

SAN(1)

BBVA

ACA

GLE

BNP(8)

RBS

STAN(1)

HSBC(2)

LLOY(1)

BCS(2)

UCG(1)

NDA

RF

COF(3)

GS(3)

JPM(5)

AXP

BBT(2)

BAC(2)

BK

C(1)

FITB

MS(1)

PNC(1)

STT(1)

STI

USB(1)

WFC

Australia (1)

Bulgaria

Canada (4)

Switzerland

Czech Rep. (3)

Denmark (2)

Austria (2)

Belgium (2)

Croatia (1)

Cyprus (1)

Finland

France

Germany (2)

Greece (3)

Hungary (2)

Ireland (2)

Italy

Netherlands (3)

Poland

Portugal

Slovenia (1)

Spain (2)

Slovakia (4)

United Kingdom (4)

Hong Kong

Japan (3)

Malaysia

Norway (1)

New Zealand

Romania

Sweden (2)

Singapore

Turkey (3)

Russia (1)

United States

Venezuela

From 03−Jan−2003 to 30−Dec−2005

DEXB(9)

CS(4)

UBS(7)

CBK

DB(1)

SAN(1)

BBVA

ACA(11)

GLE(1)

BNP(10)

RBS(6)

STAN

HSBC(10)

LLOY(15)

BCS(5)

UCG(1)

NDA

RF(1)

COF(4)

GS(1)

JPM(2)

AXP(1)

BBT

BAC(4)

BK

C(3)

FITB(3)

MS(11)

PNC

STT(5)

STI(2)

USB(4)

WFC(1)

Australia (9)

Bulgaria (5)

Canada (7)

Switzerland (1)

Czech Rep. (1)

Denmark (6)

Austria (3)

Belgium (5)

Croatia (2)

Cyprus (3)

Finland (6)

France (7)

Germany (9)

Greece

Hungary (1)

Ireland (6)

Italy (7)

Netherlands (6)

Poland (3)

Portugal (2)

Slovenia (1)

Spain (5)

Slovakia (2)

United Kingdom (5)

Hong Kong (3)

Japan (2)

Malaysia

Norway (2)

New Zealand (6)

Romania (1)

Sweden (2)

Singapore (1)

Turkey (1)

Russia (2)

United States (1)

Venezuela

From 17−Aug−2006 to 13−Aug−2009

DEXB(4)

CS(11)

UBS(9)

CBK(4)

DB

SAN(1)

BBVA(2)

ACA(2)

GLE

BNP(10)

RBS

STAN(3)

HSBC(3)

LLOY(2)

BCS(1)

UCG(4)

NDA(1)

RF(5)

COF(4)

GS(16)

JPM(5)

AXP(4)

BBT(13)

BAC(2)

BK(5)

C(2)

FITB(4)

MS(5)

PNC(10)

STT(1)

STI(2)

USB(3)

WFC(8)

Australia (3)

Bulgaria (2)

Canada (5)

Switzerland (3)

Czech Rep. (9)

Denmark (1)

Austria (3)

Belgium (6)

Croatia (7)

Cyprus (3)

Finland (5)

France (3)

Germany (2)

Greece (7)

Hungary (4)

Ireland (8)

Italy (8)

Netherlands (4)

Poland (4)

Portugal (8)

Slovenia (8)

Spain (6)

Slovakia (1)

United Kingdom (1)

Hong Kong (2)

Japan (2)

Malaysia

Norway (3)

New Zealand

Romania (3)

Sweden (1)

Singapore (3)

Turkey (15)

Russia (3)

United States (3)

Venezuela

From 17−Aug−2006 to 13−Aug−2009

DEXB(6)

CS(2)

UBS(3)

CBK(2)

DB(2)

SAN(1)

BBVA(4)

ACA(1)

GLE

BNP(2)

RBS(2)

STAN(2)

HSBC(5)

LLOY(1)

BCS(2)

UCG

NDA(1)

RF(3)

COF(2)

GS(4)

JPM(3)

AXP(1)

BBT(1)

BAC(1)

BK(1)

C(2)

FITB(7)

MS(2)

PNC(2)

STT(5)

STI(1)

USB(4)

WFC(2)

Australia

Bulgaria (3)

Canada (1)

Switzerland (1)

Czech Rep. (4)

Denmark (4)

Austria (2)

Belgium (9)

Croatia (5)

Cyprus (3)

Finland (2)

France (4)

Germany (3)

Greece (1)

Hungary (1)

Ireland (1)

Italy

Netherlands (1)

Poland

Portugal (2)

Slovenia (2)

Spain (3)

Slovakia

United Kingdom (2)

Hong Kong (2)

Japan (1)

Malaysia

Norway (1)

New Zealand (7)

Romania (1)

Sweden (2)

Singapore (2)

Turkey (3)

Russia (3)

United States (1)

Venezuela

From 31−Aug−2009 to 27−Aug−2012

DEXB(4)

CS(6)

UBS(1)

CBK(1)

DB(8)

SAN(5)

BBVA(4)

ACA(4)

GLE(3)

BNP(1)

RBS(4)

STAN(2)

HSBC

LLOY(6)

BCS(5)

UCG(7)

NDA(3)

RF

COF(3)

GS

JPM(6)

AXP(2)

BBT(3)

BAC(3)

BK(1)

C(2)

FITB(4)

MS(1)

PNC(5)

STT(5)

STI(4)

USB(2)

WFC(2)

Australia

Bulgaria (6)

Canada (2)

Switzerland

Czech Rep.

Denmark (4)

Austria (1)

Belgium (1)

Croatia (11)

Cyprus (7)

Finland (2)

France (1)

Germany (3)

Greece (3)

Hungary

Ireland (4)

Italy (1)

Netherlands (2)

Poland (3)

Portugal (4)

Slovenia (3)

Spain (7)

Slovakia (3)

United Kingdom (2)

Hong Kong (2)

Japan (2)

Malaysia

Norway (2)

New Zealand (6)

Romania (3)

Sweden (4)

Singapore (5)

Turkey (3)

Russia (7)

United States (3)

Venezuela

From 31−Aug−2009 to 27−Aug−2012

Figure 1: Six snapshots of the causal network described in Section 5. The left column reports networks
based on the (Ej =⇒ BBuy

i )t causal relationship, while the right column refers to the (Ej =⇒ BSell
i )t one.

Hence a link in the left (resp. right) column is a proxy for a distressed buying (resp. selling). For each
snapshot we report in the title the period used to compute the network. For comparison, each row in the
plot corresponds to a given period. The first row displays a period that is not associated to a strong financial
crisis. The other two are chosen among (non-overlapping) periods of financial distress. When hit by a link,
sovereign bonds (and the corresponding link) are coloured according to the attached S&P rating (blue =
AAA, magenta = AA, green = A, orange = BBB, red = BB) while, in the other case, they are left black.
We report node degrees for both banks and bonds in brackets (only when different from zero).
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we propose a formal test to confirm that, during the depicted periods, the number of distress buying directed

toward AAA rated bonds and that of distress selling toward the remaining ones is not compatible with a

random graph.

As in Billio et al. (2012), we are interested in measuring of the density of the network (also called

connectedness) whose deviation from the expected value under the null of no causal relationship may signal

the presence of systemic events or distress. As a first investigation we define the two quantities

DSell
t ≡ 1

NE
t NB

t

NEt∑
j=1

NBt∑
j=1

(
Ej =⇒ BSell

i

)
t
,

DBuy
t ≡ 1

NE
t NB

t

NEt∑
j=1

NBt∑
j=1

(Ej =⇒ BBuy
i )t, (6)

where NE
t and NB

t represent, respectively, the total number of available equities and bond series in the

t-th network. The two quantities defined in (5) are the percentage of validated causal links according to the

either
(
Ej =⇒ BSell

i

)
t

or (Ej =⇒ BBuy
i )t. For completeness we also define the percentage of validated links

according to the original Granger (1969) definition

Dt =
1

NE
t NB

t

NEt∑
j=1

NBt∑
j=1

(Ej =⇒ Bi)t . (7)

Figure 2 reports the two measures of connectedness defined in (5) and the Granger (1969)-based measure

defined in (7), as a function of time. Note that, being all statistical tests for each equity-bond pair performed

with a confidence level of 5%, under the null of no-causality we expect to find, for the three connectedness

measures, a value around 5%. In fact, the confidence levels under the null of no-causality may be higher due

to finite-sample effects or estimation errors. For this reason we compute confidence levels of the three types

of causality using a bootstrap procedure described in Appendix E. As a results we obtain three different

levels, one for each causality, reported in Figure 2 with the same line styles of the corresponding measure of

connectedness. The levels for the two measures defined in (5) are slightly greater than that of the Granger

(1969)-based measure mainly because of the error involved in the estimation of the VaR model but also

because the tail-test is built from a smaller statistics.

Figure 2 witnesses an interesting empirical evidence. If we interpret DSell
t and DBuy

t as, respectively,

indicators of periods of general distress selling and distress buying, the former peaks during the Eurozone

crisis while the latter during the 2007−2008 financial market crisis. This evidence provides a first indication

of the fact that the two crisis periods are associated with different types of flight-to-quality behaviors:

the first is characterized by a strong increase in sovereign bond purchases which is not accompanied by

a substantial rise in sovereign bond selling; while the second crisis features the contemporaneous presence

of both generalized distress buying and distress selling of sovereign bond. We will further investigate and

discuss this evidence in the next section. Finally, we note that the original Granger (1969)-based centrality

measure produces a weaker signal compared to the tail Granger-causality measures, being significant only

during the Eurozone crisis, and appear to be highly related with the indicator of distressed selling.

6 Flight to quality

In this section we develop our econometric measure of flight-to-quality built upon the Granger causal networks

previously defined. A flight-to-quality episode is commonly referred to as a conveyance of capital from risky
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Figure 2: The black continuous and the red dotted lines represent, respectively, the percentage DSell
t of 95%-

significant (Ej =⇒ BSell
i )t and the percentage DSell

t of (Ej =⇒ BBuy
i )t 95%-significant causal links defined

in equation (5). The blue line with filled circles plots Dt, that is the percentage of validated links according
to the Granger (1969)-based causality defined in equation (7). The dates reported in the horizontal axis
correspond to the end of the time-window. Hence, for example, the level of the black line around mid-2008,
which is approximately 12%, is computed using observation from mid-2005 to mid-2008. Horizontal lines
report the bootstrapped 5% confidence level of each measures (see Appendix E).

assets to more secure ones thus accepting to receive lower expected returns. Such events are triggered by

particularly distressed states of the market in which the risk aversion of investors may suddenly increase.

As clearly spelled out in Anderson and Liu (2013), [...] in times of turmoil, investors accept zero or negative

nominal yields as a fee for safety.

The crucial point here is to understand which kind of quality is sought by market players in each period.

First we need to identify a proxy for the quality of sovereign bond. For this analysis we use the historical

S&P’s ratings. More precisely, for each bond in the dataset, we have at our disposal the historical S&P’s

ratings divided into 10 different rating classes10. We aggregate these 10 rating classes into two broad

categories which we generically denote as “good” and “bad” bonds. Clearly, this broad classification will

depend on how strict the definition of a “good” bond is. In order to investigate the different level of quality

requested by the market in different periods, we consider two different definitions of “good” bonds. In the

first definition, that will be referred to as the weak definition of quality, we define “good” bonds as those

with a rating between AAA and A and “bad” bonds the remaining ones. The second definition, that will

be referred as the strong definition of quality, is more stringent since classified a bond as “good” only if the

corresponding country has a AAA rating. Hence, for each time-window t, we define the indicator function

1i∈Good (t) as equal to one if bond i is rated in the “good” category in the time-window t and zero otherwise.

Similarly, 1i∈Bad (t) is the indicator function that equals one if bond i is rated in the “bad” category in the

time-window t and zero otherwise.

10Namely: AAA, AA, A, BBB, BB, B, CCC, CC, C, SD (selectively defaulted on some obligations). The first available bond
price in the time stamp may correspond to a earlier date than the first available rating for the same bond (see Table 4). If
this is the case, we attach to the bond the first available rating. The impact of this attribution is negligible since we divide the
bonds into two aggregated categories according to two definitions of quality.
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We then consider the four quantities

GoodBuy
t ≡

∑NEt
j=1

∑NBt
i=1(Ej =⇒ BBuy

i )t 1i∈Good (t)

NE
t

∑NBt
i=1 1i∈Good (t)

,

GoodSell
t ≡

∑NEt
j=1

∑NBt
i=1

(
Ej =⇒ BSell

i

)
t
1i∈Good (t)

NE
t

∑NBt
i=1 1i∈Good (t)

, (8)

BadBuy
t ≡

∑Ne
j=1

∑Nb
i=1(Ej =⇒ BBuy

i )t 1i∈Bad (t)

NE
t

∑NBt
i=1 1i∈Bad (t)

,

BadSell
t ≡

∑Ne
j=1

∑Nb
i=1

(
Ej =⇒ BSell

i

)
t
1i∈Bad (t)

NE
t

∑NBt
i=1 1i∈Bad (t)

.

For example, GoodBuy
t is the average number of buy causal links hitting a bond of the category Good. These

metrics can be interpreted as an index of distressed buying or distressed selling, depending on the kind of

causal relationship adopted. Figure 3 shows their time series, distinguishing between the two definitions of

quality, together with the corresponding levels under the null of no causality. The left and right columns of

Figure 3 report, respectively, the average number of hits according to the first (weak) definition and to the

second (strong) definition of quality.

It is interesting to note that, once we identify quality with top-rated AAA bonds (top-right panel), there

is a striking increase of the index of distressed buying (black continuous line) toward good bonds during the

2007 financial crisis and the Eurozone crisis, whose inception dates back roughly around the beginning of

2009. This evidence is less pronounced when considering the weaker definition of quality. Moreover, there

is scant evidence of distress selling (red dotted line in the top-right panel) in top rated AAA bonds in the

second phase of the crisis (2010 and 2011) while we can observe a considerable increase on distress selling

during the Eurozone crisis in all the other category (red dotted lines).

The implications of this novel empirical evidences are far reaching and they clearly show that prominent

market players do chase for quality in periods of market distress but they do it in different ways: in the first

phase, during the 2007−2008 financial crisis, they chased quality by buying sovereign debt bonds particularly

of top-rated AAA quality but also of AA and A quality and without simultaneously liquidating massively

other lower rating bonds. In fact only bad bonds in weak sense show a moderate distressed selling activity

(bottom left panel) On the contrary, in the second phase, during the 2009 − 2011 Eurozone crisis, they

required only top-quality sovereign debt, i.e. the flight-to-quality occurred exclusively toward AAA-rated

sovereign bonds, also at the expense of other not AAA bonds who were simultaneously heavily liquidated.

Note that, the extraordinarily high number of hits toward the AAA-A category during the 2007-2008

financial crisis (which is manifested as the peak around mid-2008 of the black continuous curve in the top-

right panel of Figure 3), is likely to be a consequence of a flight-to-quality from toxic assets (such as subprime

mortgages) to highly rated sovereign debts. However, since our dataset does not include any of the assets

that were perceived as toxic during the subprime mortgage crisis, we cannot fully investigate such type of

flight-to-quality. Nevertheless, our analysis clearly points towards the existence of two different types of flight-

to-quality: in the first one (during the 2007 − 2008 financial crisis) major banks rebalanced their portfolio

from risky equity and structured asset to sovereign bonds, while in the second one (during the 2009− 2011

Eurozone crisis) they rebalanced mainly their sovereign bond portfolio from low and medium-rated bonds

to top-rated bonds. The latter could thus be termed a “flight-to-top-quality” event.

The hypothesis of occurrence of different flight-to-quality episodes suggested by the plots of Figure 3

can be statistically validated comparing the number of hits per category with those expected under the

null in which links from equities to bond are randomly assigned. The computation of these expected values
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Figure 3: The four plots show the average number of causal links as defined in equation (8). The left column
reports the results corresponding to the weak definition of bond quality while the right column corresponds
to the strong one. In each plot the continuous black line refers to the average number of hits according to
the number of (Ej =⇒ BBuy

i ) validated links, while the red dotted line is in correspondence of the number
of (Ej =⇒ BSell

i ) validated links. Horizontal lines are the corresponding levels under the null of no causality.

under the null is straightforward: if bonds were randomly hit by equities without any preference toward a

specific category, then the probability to observe less than NBuy
Good,t hits is given by the cumulative binomial

distribution

PBuy
Good,t =

NBuy
Good,t∑
k=0

(
NBuy
t

k

)
pkGood,t (1− pGood,t)

NBuy
t −k

, (9)

where

pGood,t =

∑NBt
i=1 1i∈Good (t)

NB
t

is the probability of having a good rated bonds at time t and where NBuy
t =

∑NEt
j=1

∑NBt
i=1(Ej =⇒ BBuy

i )t, is

the total number of significant (Ej =⇒ BBuy
i )t links. The computation of P Sell

Bad,t and the other probabilities

follows the same rule.

When the probability in (9) is larger than a threshold p (e.g. p = 99%), it means that there is a

statistically significant number of (Ej =⇒ BBuy
i )t casual links from equities to good rated bonds. A similar

reasoning is valid for the bad rated ones and
(
Ej =⇒ BSell

i

)
t

casual links. A flight-to-quality episode can

hence be identified when both PBuy
Good,t and P Sell

Bad,t are larger than p simultaneously. Results of the flight-to-

quality test are reported in Figure 4 distinguishing, as before, between the two definitions of good and bad

bonds. The left panel corresponds to the weak definition where good bonds are those laying in the class from

AAA to A, while the right panel corresponds to the strong definition of quality where a bond is classified as

good only if the country has a AAA rating. The vertical thick lines are in correspondence of the periods in

which our test identifies a flight-to-quality. They are distinguished into three cases, continuous black vertical
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Figure 4: The figure shows the proposed flight-to-quality measure. Vertical lines are in correspondence
of time-windows in which both PBuy

Good,t and P Sell
Bad,t are above a threshold p, which is fixed to 99% for the

continuous black vertical lines, to 97.5% for the thick red dotted lines and to 95% for thin dotted blue lines.

The thin black curve represents the quantity
(
PBuy

Good,t + P Sell
Bad,t

)
/2, that is the arithmetic mean of the two

probabilities.

lines correspond to p = 99%, thick red dotted ones to p = 97.5% and thin dotted blue lines to p = 95%.

The scenario depicted by the results of Figure 4 confirms the intuition that we got from the preliminary

analysis inspired by the plots in Figure 3 and from the network snapshots of Figure 1: quality is required as

consequence of the turmoil and distrust spread by the Eurozone crisis, and the phenomenon is well-identified

if quality is defined by top-quality AAA-rated bonds. In fact, with the weak definition of quality, we find

only one highly significant period of flight-to-quality after mid-2009 and many other less significant scattered

all around the time stamp. On the contrary, the strong definition gives a concentrated sequence of highly

significant events around the Eurozone crisis and even before the beginning of 2009. In each panel of Figure

4 we add a black curve in correspondence of the arithmetic mean of the two probabilities PBuy
Good,t and P Sell

Bad,t.

This quantity may be thought as an early indicator of flight-to-quality. In fact, while the weak definition of

quality returns a quite noisy path for such an indicator, in the strong definition we observe a much more

smooth curve. In particular, in the case of the right panel, the indicator starts increasing in mid-2007, much

before the onset of the Eurozone crisis, and peaks some months before 2009. This result could be conjectured

to be a consequence of the capability of big market player of fearing the effect of the 2007 financial crisis on

the the sovereign debt of countries with a weak fiscal discipline, although a deeper analysis is required to

confirm such an hypothesis.

7 Out-of-sample analysis

In order to test the predictive power of the Granger analysis we perform out-of-sample regressions which, in

spirit, follow the approach proposed in Billio et al. (2012). For a given time-window t and a given sovereign

bond i, we define the three centrality measures

HSell
i,t ≡

1

NE
t

NEt∑
j=1

(
Ej =⇒ BSell

i

)
t
, HBuy

i,t ≡
1

NE
t

NEt∑
j=1

(Ej =⇒ BBuy
i )t, Hi,t ≡

1

NE
t

NEt∑
j=1

(Ej =⇒ Bi)t , (10)

which, in network terms, are the degree of the bond nodes. The economic interpretation of the quantities

defined above is straightforward. For example HSell
i,t is the percentage of significant causal links (Ej =⇒

BSell
i ) coming from the equity side of the network that hit the i-th bond in the time-window t. Large
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values of HSell
i,t are expected when the i-th bond is subject to a large amount of distressed selling. Thus, a

similar interpretation is valid for HBuy
i,t , although the economic interpretation of Hi,t is less direct, since the

Granger (1969) captures causality in mean. Nevertheless, in our out-of-sample forecast exercise, we take into

consideration Hi,t as well for comparison.

7.1 Dynamic proxies of quality

In this section we adopt and describe four proxies of sovereign bond quality that are defined “dynamically” in

the sense of a continuous, time-dependent, real variables, in opposition to agency ratings that are piecewise

constant categorical variables. A finer description of the bond quality is needed since the the idea is to test

the forecasting power of suitable centrality measures of the causality networks in predicting the bond quality.

For this purpose agency ratings are not particularly suited mainly because they are almost constant during

time and, when they change, they signal a huge downgrade or, more rarely, a huge upgrade of the sovereign

debt quality.

Our conjecture is that, during periods in which systemic events are in place, centrality measure play an

import an role in forecasting the future bond quality. This would corroborate their role as early warning

indicators of systemic risk.

The first proxy is based on the correlation between the series of sovereign bond yields and the corre-

sponding credit default swap of a given country. A simple absence of arbitrage argument links the spread S
of CDS with the par-yield γ of a bond of the same entity. As pointed out by Hull et al. (2004), the difference

between a CDS spread and the corresponding par-yield should equal the risk-free rate, or

S = γ − r, (11)

The difference between a CDS spread and the excess par-yield over the risk-free rate, b = S − (γ − r), is

usually referred as the basis. Hence, the no-arbitrage condition requires the basis to be zero. On a large

sample of companies and sovereign data, Hull et al. (2004) find that the no-arbitrage relationship between

CDS and par-yield holds fairly well, with a risk-free rate slightly smaller than the swap rate and above the

Treasury rate. In our dataset11 we observe that, especially in periods of financial distress, such arbitrage

relationship is often violated, particularly for those countries whose credit quality is commonly perceived as

remarkably good.

Figure 5 visualizes this phenomenon. The left and right panels report the five-years maturity CDS spread

(continuous black line) and the corresponding five-years maturity sovereign bond yield (dotted red line) for

Russia (left) and Germany (right). The bond-yield reported is the nominal par-yield after the subtraction

of the zero-coupon curve, whose computation is mentioned in Section 4, and hence it should equal the

CDS spread according to the no-arbitrage condition (11). The period depicted includes the Eurozone crisis.

The plots in Figure 5 put in evidence that, while Russia has a CDS-bond correlation of almost 100%, in

agreement with the no-arbitrage constraint, the case of Germany is totally different, showing even a negative

CDS-bond correlation. Intuitively, CDS spreads increase during a period of crisis since investors require

higher premium, however the behavior of bond yield can be very different according to the perceived credit

quality of the country. The case of Germany is the most striking: large capital flows are directed toward

the German sovereign debt pushing downward the level of the corresponding yield, while the CDS spread

continues its rise as a consequence of the generalized increase in global credit risk. This empirical evidence

has been somehow foreseen by the past literature. In fact, price gaps among securities with identical cash

flow have been theoretically justified by the general equilibrium model by Gârleanu and Pedersen (2011),

where the surge the CDS-bond basis is due to negative shocks to the economy that force agents to hit their

11Our dataset has almost zero overlap on time with that of Hull et al. (2004).
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Figure 5: Left and right panels report, respectively, the five-years maturity spread (continuous black line)
and bond yield over the zero-coupon curve (dotted red line) for Russia and Germany in the period that
starts in January, 1, 2007 and ends at February, 14, 2014.

their margin constraints. Moreover the formation of CDS-bond bases has been recently addressed as the

consequence of flight-to-quality episodes (Fontana and Scheicher, 2010).

In our analysis we do not investigate the determinants of CDS-bond bases, limiting ourselves to the

ranking of bond quality obtained by using the CDS-bond correlation. In the light of the empirical evidences

of Figure 5 and the most recent interpretation of the CDS-bond joint dynamics, we introduce our first

dynamical proxy for quality as the one minus the CDS-bond correlation, i.e.

Ci = 1− Corr [∆γi,t,∆Si,t] , Ci ∈ [0, 2] , (12)

where the capital letter C is introduced to remind that the quality proxy is based on the CDS-bond corre-

lation12 coefficient and where ∆γi,t and ∆Si,t indicates, respectively, the series of one-lag difference for γi,t

and Si,t.
The first column of Table 1 reports the country ranking according to the quality measure Ci, computed

using all observations after the beginning of 2007. As anticipated we observe a clear alignment between

the country and what it is intuitively expected: countries with weak fiscal discipline (e.g. Spain, Italy and

Portugal) stay in the bottommost part of the table with very low values of Ci, while the largest values

are reached for countries such as Germany or Austria, whose claims on sovereign debts are undoubtedly

perceived as more reliable. The case of Greece is not particularly significant since the corresponding CDS

series show a very peculiar behavior, with a diverging dynamics during the Eurozone crisis.

In order to have a multifaceted description of the bond quality, we introduce three further measures that

are obtained exclusively using the bond yields time series. The simplest univariate measure related to bond

quality is the bond yield “realized volatility”, defined as

RVi =
∑

t≥2007

(∆γi,t)
2
,

where γi,t indicates the daily series of the nominal bond yield for country i. The larger the value of RVi the

greater the uncertainty about its value, hence we expect RVi to be inversely related to bond quality. This

intuition is confirmed by the second column of Table 1, where countries are ranked according to increasing

values of RVi, with Japan being the less volatile and Greece at the end of the ranking.

The remaining two measures are based on yield spreads defined in the standard way, i.e. the difference

12Note that in equation (12) we are not specifying which time period is used for the two series ∆γi,t and ∆Si,t, nevertheless
this will become clear according to the specific case.
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between a given sovereign bond yield and the corresponding German bond yield at the same maturity (which

is, in our applications, five years). The introduction of yield spreads in our analysis is justified by the vast

literature on the role of spreads in many aspects of the global economy. For example, the prominent role of

spreads in the European Monetary Union as a source of risk is analyzed, much before the Eurozone crises,

by Geyer et al. (2004) with the adoption of a two-factors model. Moreover, Manganelli and Wolswijk (2009)

investigate the relationship between macro-economic policies and yield spreads. Their empirical findings

confirm that changes in interest rates affect the risk-aversion of investors producing a significant impact on

yield spreads. Global spreads and fiscal fundamentals of the euro area are used to proxy expected exchange

rate devaluation in an econometric model for euro area spread by Favero (2013). De Santis (2014) identifies

a flight-to-liquidity premium as the only factor explaining the sovereign spreads for countries with low credit

risk such as Netherlands and Finland.

The yield spread is formally defined as si,t = γi,t − γGER,t, where γGER,t is the bond yield for Germany.

The spread-based measures that we adopt are defined as

sSi =
1

Ni

∑
t≥2007

si,t, and SMi = max
t≥2007

si,t,

which represent, respectively, the average and the maximum spread in the period after January, 1, 2007.

Note that, as for RVi, the spread-based measures are expected to be inversely related to quality. This is

confirmed by the third and fourth columns of Table 1 where, typically, we observe countries like Greece or

Portugal with the highest values of the spread-based measures and Switzerland, Singapore and Netherlands

among the lowest ones13.

We adapt the definitions of the four quality proxies introduced above in order to perform genuine out-

of-sample forecasts. For this purpose, we dynamically compute the quality proxies over a moving windows

(t, t + h] with h the number of days ahead over which the forecast is performed. Then, the four quality

proxies are dynamically restated as

Ci,t+h = 1− Corr [∆γi,∆Si]t:t+h ,

RVi,t+h =

t+h∑
τ=t

(∆γi,τ )
2
, (13)

sSi,t+h =
1

h

t+h∑
τ=t

si,τ ,

SMi,t+h = max
τ∈(t,t+h]

si,τ .

Similarly to what it is done in Billio et al. (2012), in order to mitigate the effect of outliers (see, for

example, the case of Greece in Table 1), we switch to the rankings of those measures introducing calligraphic

notation for all the variables involved. For example HSell
i,t indicates the ranking of HSell

i,t in the t-th time-

window14, sSHi,t will indicate the ranking of SHi,t in (t, t+ h], and so on.

7.2 Out-of-sample cross-sectional regressions

The out-of-sample regressions that we run are designed to test if, especially in periods of distress, the cross-

sectional rankings of bond quality proxies can be predicted by past bond centrality measures. Since each of

the dynamical proxies of quality is expected to be persistent (or strongly persistent in the case of realized

volatility) it is important, to avoid spurious results, to include the lagged value of the dependent variable

13Germany has trivially a zero value for all these spread-based measures.
14Hence HSell

i,t ≈ 1 for the bond with the highest value of HSell
i,t and HSell

i,t ≈ 0 for that with the lowest value.
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Table 1: Ranking of country according to quality proxies.

Ci RVi sSi SMi

1.275 Germany 0.933 Japan -2.453 Switzerland -1.054 Singapore

1.149 Australia 1.885 Switzerland -2.242 Singapore -0.855 Switzerland

1.115 Denmark 3.119 Singapore -1.828 Hong Kong 0.000 Germany

1.113 Sweden 3.832 New Zealand -1.531 Japan 0.008 Japan

1.111 Romania 4.264 Sweden -1.241 United States 0.563 Hong Kong

1.075 Czech Rep. 4.390 Finland -1.199 Finland 0.861 Netherlands

1.069 United Kingdom 4.475 Hong Kong -1.085 France 1.201 Denmark

1.062 Norway 4.643 Netherlands -0.785 Sweden 1.341 United Kingdom

1.042 United States 4.797 Denmark -0.130 Canada 1.454 Sweden

1.029 Japan 4.849 Canada -0.100 Malaysia 1.733 Norway

1.025 Singapore 4.886 Norway 0.000 Germany 1.910 Canada

1.004 Bulgaria 4.911 France 0.016 Slovakia 2.080 Austria

0.993 New Zealand 4.964 Poland 0.178 Denmark 2.095 United States

0.976 Finland 5.079 Czech Rep. 0.208 Italy 2.115 Finland

0.967 Hong Kong 5.105 Germany 0.238 Netherlands 2.129 France

0.959 Canada 5.170 United Kingdom 0.404 Austria 2.374 Slovakia

0.944 Switzerland 5.171 Austria 0.509 United Kingdom 2.411 Czech Rep.

0.937 Malaysia 6.325 Croatia 0.588 Poland 2.622 Malaysia

0.936 Turkey 6.442 Belgium 0.700 Bulgaria 3.097 New Zealand

0.885 Netherlands 7.187 Slovakia 0.700 Belgium 3.121 Poland

0.880 Slovakia 8.343 Australia 0.767 Czech Rep. 3.703 Italy

0.846 Hungary 8.436 United States 0.874 Norway 3.792 Australia

0.777 Poland 9.072 Malaysia 1.012 New Zealand 4.103 Belgium

0.746 Greece 10.803 Slovenia 1.680 Spain 5.044 Bulgaria

0.705 Austria 14.926 Italy 1.854 Slovenia 5.640 Slovenia

0.645 Croatia 15.161 Spain 2.300 Portugal 6.561 Croatia

0.642 Cyprus 21.824 Hungary 2.383 Russia 6.705 Russia

0.591 France 23.646 Russia 2.415 Australia 6.981 Spain

0.553 Slovenia 27.438 Ireland 2.484 Ireland 8.790 Hungary

0.544 Russia 68.692 Portugal 2.849 Hungary 9.939 Romania

0.369 Belgium 70.947 Venezuela 2.934 Croatia 14.043 Ireland

0.339 Ireland 71.989 Romania 3.940 Cyprus 15.454 Cyprus

0.337 Venezuela 85.221 Turkey 3.994 Romania 16.812 Portugal

0.327 Portugal 88.153 Bulgaria 7.974 Turkey 18.306 Venezuela

0.249 Italy 108.341 Cyprus 9.040 Venezuela 19.843 Turkey

0.220 Spain 846.110 Greece 11.406 Greece 55.484 Greece

Note: Each of the four panels contains the ranking of all countries according to the corresponding variable reported in the column
label. Each variable is computed using all data available after 2007. More precisely, Ci is the defined as 1− ρi where ρi is the sample
correlation between the sovereign bond yield and the CDS spread (and it is plotted in decreasing order). RVi is the realized volatility
of bond yield variations. sSi and SMi are, respectively mean and maximum value of the spread between the bond of the i-th country
and the German bond.
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in the forecasting regression. It is also important to stress that, at any point in time, the regressors (i.e.

the centrality measures (10) and the lagged dependent variable) and the dependent variables (one of the

quality proxies (13)) are computed over time windows having zero overlaps. More precisely, the regressors

are computed on a past time horizon that is (t−h, t] for the lagged dependent variable and that is the three

years preceding t for the network centrality measures. The regressors are indicated with the subscript t, while

the chosen dependent variable (i.e. one among the four quality proxies) is calculated over the forecasting

period (t, t+ h] and denoted with the subscript t+ h.

In our analysis we adopt a twofold strategy. First, for every t, we run the two nested cross-sectional

regressions

Yi,t+h = K(1) + αt Yi,t + ε
(1)
i (14)

and

Yi,t+h = K(2) + αt Yi,t + βt Xi,t + ε
(2)
i , (15)

where Yi,t is the ranking of one among Ci,t, RVi,t, sSi,t and SMi,t defined in (13), while the independent

variable Xi,t is the ranking of one among the centrality measures defined in (10).

In the setting of equations (14)-(15) we are testing whether or not the addition of the systemically relevant

variable is improving the simple auto-regression (14). Figures 6, 7 and 8 report the t-statistic of the regression

coefficient βt in (15) for the regressions with dependent variable, respectively, Ci,t, RVi,t and15 SMi,t. We

choose a value of h = 360, which corresponds to annual forecasts16. Black points are in correspondence of the

regressions in which, according to a standard F-test with 95% confidence, the addition of Xi,t significantly

improves the simple auto-regressive model (14).

The second approach consists in comparing, for a given proxy of the i-th bond quality Yi,t+h computed in

the forecasting horizon (t, t+h], the forecasting ability of past values of the dependent variable itself against

that of systemic risk variables. For a given t we then compare the cross-sectional regression (14) with a new

regression where the lagged dependent variable is substituted by one of the systemic relevant variables, that

is

Yi,t+h = K(2)′ + β′t Xi,t + ε
(2)′

i (16)

For this regression we compute the t-statistics of β′t and the p-value of the Vuong (1989) likelihood ratio

test17 . Since, as mentioned before, the dependent variables Yi,t are typically persistent, we expect that only

in some peculiar periods the systemic relevant variates over-perform the past values of Yi,t in forecasting

future values of Yi,t+h.

7.3 Results

The regression results are depicted in Figures from 6 to 918 and can be summarized in three main empirical

findings.

First, the black points in Figure 6 shows a significant negative impact of HSell
i,t on future values of CDS-

bond correlation rankings. This means that the bond quality ranked according to Ci is, in period of financial

distress, significantly influenced by the intensity of distressed selling experienced by the bond in the past

year. The negative sign is in agreement with the idea that high values of Ci correspond to a better quality

15For the sake of exposition, results relative to sSi,t are reported in Figures 11 of the Appendix F.
16Results with different h are similar and available upon request.
17The test is two-sided and it is designed to be around 100% when model (14) outperforms model (16) and around 0% the

other way round.
18For the second regression (16) we only report the results obtained when the dependent variable is the quality proxy based

on bond-CDS correlation.
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Nested models comparison with dependent variable Ci,t.
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Figure 6: This figure depicts, for each time-window t = 1, ..., 99 whose closure is at day et (reported in
the horizontal axis), the t-statistic of βt in (15) where the dependent variable Yi,t is the ranking of the

variable CHi,t defined in (13) and computed in the forecasting horizon (et, et + h], with h = 360. Each column

corresponds to a different regressor Xi,t in (15). More precisely, Xi,t = HB+
i,t for the first, Xi,t = HB−i,t

for the second and Xi,t = Hi,t for the third. A black point is reported whenever the regression (15) is
significantly better (according to a standard F-test with 95% confidence) than the simple auto-regressive
model (14). Horizontal red dotted lines are in correspondence of 95% confidence level of the standard Normal
distribution.

for the bond (see Table 1). On the contrary, the distressed buying indicator has no strong influence on future

value of Ci, besides the direction of the impact is also slightly noisy. Note that, as for the results in Figure

2, the regression with the original Granger (1969)-based measure of centrality are roughly in agreement

with those of the distressed selling indicator. The non-nested analysis reported in Figure 9 corroborates

the results of Figure 6, with the intriguing implication that, during periods of financial turmoil, systemic

variables are more informative than past values of quality measures in predicting the future quality of the

bonds.

Second, the realized volatility of bond yield is positively impacted by the indicator of distressed selling

HSell
i,t and by the Granger (1969)-based measure of centrality, and this is particularly true for HSell

i,t during

the Eurozone crisis. The distressed buying indicator HBuy
i,t shows a noisier behavior, even if it tends to show

a negative sign when significant (as intuitively expected) over most of the sample (turning positive only in

the final periods).

Third, the maximum spread is largely influenced by HSell
i,t for the entire period of the Eurozone crisis (we

remember that each point of the horizontal axis refers to the previous three years for the dependent network

centrality, and to the subsequent year for the dependent quality proxy) and even later.

In summary, we can assert that the percentage of significant (Ej =⇒ BSell
i ) and (Ej =⇒ Bi) causal links

has a clear impact on future values of the bond quality proxies, while the distress buying indicator may go

in different directions depending on the period analyzed.
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Nested models comparison with dependent variable RVi,t.
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Figure 7: This figure depicts, for each time-window t = 1, ..., 99 whose closure is at day et (reported in
the horizontal axis), the t-statistic of βt in (15) where the dependent variable Yi,t is the ranking of the

variable RVH
i,t defined in (13) and computed in the forecasting horizon (et, et + h], with h = 360. Each

column corresponds to a different regressor Xi,t in (15). More precisely, Xi,t = HB+
i,t for the first, Xi,t = HB−i,t

for the second and Xi,t = Hi,t for the third. A black point is reported whenever the regression (15) is
significantly better (according to a standard F-test with 95% confidence) than the simple auto-regressive
model (14). Horizontal red dotted lines are in correspondence of 95% confidence level of the standard Normal
distribution.

Nested models comparison with dependent variable SMi,t.
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Figure 8: This figure depicts, for each time-window t = 1, ..., 99 whose closure is at day et (reported in
the horizontal axis), the t-statistic of βt in (15) where the dependent variable Yi,t is the ranking of the

variable SMH
i,t defined in (13) and computed in the forecasting horizon (et, et + h], with h = 360. Each

column corresponds to a different regressor Xi,t in (15). More precisely, Xi,t = HB+
i,t for the first, Xi,t = HB−i,t

for the second and Xi,t = Hi,t for the third. A black point is reported whenever the regression (15) is
significantly better (according to a standard F-test with 95% confidence) than the simple auto-regressive
model (14). Horizontal red dotted lines are in correspondence of 95% confidence level of the standard Normal
distribution.
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Non-nested models comparison with dependent variable Ci,t.
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Figure 9: This figure depicts, for each time-window t = 1, ..., 99 whose closure is at day et (reported in
the horizontal axis), the t-statistic of β′t in (16) where the dependent variable Yi,t is the ranking of the

variable CHi,t defined in (13) and computed in the forecasting horizon (et, et + h], with h = 360 Each column

corresponds to a different regressor Xi,t in (16). More precisely, Xi,t = HB+
i,t for the first, Xi,t = HB−i,t for the

second and Xi,t = Hi,t for the third. A black point is reported whenever the regression (16) is significantly
better (according to the log-likelihood ratio test of Vuong (1989) with 95% confidence) than the simple
auto-regressive model (14). Horizontal red dotted lines are in correspondence of 95% confidence level of the
standard Normal distribution.
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8 Conclusions

In this paper we introduce an econometric method to detect and analyze events of financial distress. It is

designed to test if two variables are Granger-connected in the tails of their distributions, hence it is chiefly

based on events of extraordinary nature. We derive Granger centrality measures of risk spillover between

equity log-returns of 33 systemically relevant banks and government bond yield variations for 36 countries

around the world. Moreover, we give a simple economic interpretation of such centrality measures in terms

of indicators of distressed selling and distressed buying.

Exploiting the information of S&P country ratings, our empirical analysis evidences that, during the

turbulent period of the Eurozone crisis, major banks across the world significantly impacted the sovereign

bond market chasing for quality. More specifically, they looked for top-quality bonds, freeing capitals from

the large part of non-AAA-rated bonds and moving them toward the AAA-rated ones. Besides, an intense

buying activity of AAA-rated bonds is certified during the subprime mortgages crisis. Although, we do not

have specific information on assets which were classified as toxic during the 2007 financial crisis, it is very

likely that the surge of the distressed buying index for AAA-rated bonds is due to flight-to-quality episodes

from the stock market to the government bond market. Adopting different dynamic measures of bond

quality allow us to test the out-of-sample forecast performances of the centrality measures. The indicator

of distressed selling has significant explanatory power in forecasting future values of the correlation between

CDS spreads and the bond yield of a country, of the yield realized volatility and of the maximum spread

with respect to the German bond. The behavior of the centrality measure based on the original Granger

(1969) causality, although with a reduced forecasting power, is in line with the indicator of distressed selling.

Finally, the results of the analysis suggest the possibility of adopting the Hong et al. (2009) and Granger

(1969) causality measures as early warning indicators of systemic risk. Our conjecture is that the red alarm

should be switched on every time that the information contained in the network is able to improve the

forecast of bond quality measures, or even when it turns out to be a better regressor that the past values of

the quality measure itself. Although this appears as an intriguing application of the proposed methodology,

it requires further verifications possibly with the adoption of high-frequency data and it is postpone for

future research.
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A Profit maximization with two assets.

In this Appendix we prove Proposition 1 stated in Section 2. To ease the readability, we report the constrained

portfolio optimization below.

max
A,ω

Aµ′ω

s.t. αA
√
ω′Σω ≤ E.

(17)

Before proceeding, we need to prove the following

Lemma. The optimal solution of the optimization problem (17) is given by

ω∗ =
µa σ

2
b − µb σab

µa (σ2
b − σab) + µb (σ2

a − σab)
,

A∗ =
E

α
√
ω∗′Σω∗

.

Proof.

First consider that the VaR constraint

αA
√
ω′Σω ≤ E

always binds since there is no profit for the investor in leaving part of its equity uninvested. The Lagrangian

function to be maximized is thus

L (A,ω, γ) = Aµ′ω − γ

2

[
α2A2 ω′Σω − E2

]
,

where γ is a Lagrange multiplier. The first-order condition associated to the total asset is written as

∂L (A,ω, γ)

∂A
= µ′ω − γ α2Aω′Σω = 0,

whose solution is

A =
µ′ω

γ α2 ω′Σω
.

Putting the equation above in the VaR constraint returns the optimal γ as

γ =
µ′ω

αE
√
ω′Σω

. (18)

The remaining first order condition is that relative to ω and it is written as

∂L (A,ω, γ)

∂ω
= A (µa − µb)− γ α2A2

[
ω
(
σ2
a + σ2

b − 2σab
)

+ σab − σ2
b

]
= 0. (19)

Using the constraint A = E/(α
√
ω′Σω) and equation (18) the condition in (19) becomes

(µa − µb) ω′Σω − µ′ω
[
ω
(
σ2
a + σ2

b − 2σab
)

+ σab − σ2
b

]
= 0.

Despite the appearance of the quadratic form ω′Σω, the previous equation is of degree one in ω and gives

as an optimal solution

ω∗ =
µa σ

2
b − µb σab

µa (σ2
b − σab) + µb (σ2

a − σab)
. (20)
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2

We can now proof the proposition stated in the main text, which is reported here to ease readability.

Proposition. A profit-maximizer that allocates the available resources according to (17) always reacts to

equity drops with a flight-to-quality. In formula

dω

dE
< 0.

Proof.

Suppose that the equity is perturbed E → E + dE. If the debt is approximately constant (see Adrian

and Shin, 2010) then the variation of the total asset equals the variation of the total equity, hence dA = dE.

The perturbation of the VaR constraint

α
√
ω′Σω =

E

A

gives

α

2
√
ω′Σω

d (ω′Σω)

dω
dω =

dE

A
− E

A2
dE = x

dE

λ

(
1− 1

λ

)
,

where we have used dA = dE, x is the percentage equity shock dE = xE and where λ = A
E > 1 is the

optimal leverage. It is immediate to see that

1

2

d (ω′Σω)

dω
= ω

(
σ2
a + σ2

b − 2σab
)

+ σab − σ2
b ,

whence

dω = x
dE

αλ

(
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λ

) √
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ω (σ2
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b − 2σab) + σab − σ2
b

(21)

Since λ > 1 the sign of dω is equal or opposite to that of dE according whether the quantity

ω
(
σ2
a + σ2

b − 2σab
)

+ σab − σ2
b

is positive or negative. We show that the second case is the only one which is compatible with the optimality.

Re-write the optimal ω∗ in (20) as

ω∗ =
σ2
b − σab −

µb−µa
µa

σab

σ2
a + σ2

b − 2σab + µb−µa
µa

(σ2
a − σab)

Since risk premia are positive we have µb−µa
µa

> 0 and hence

ω∗ <
σ2
b − σab

σ2
a + σ2

b − 2σab
.

The inequality above implies that dE and dω have opposite signs. Therefore if a VaR-constrained bank is

hit by a negative shock on its equity, it will react by buying a bonds and selling the risker b bonds (and vice

versa if dE > 0). 2
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B Time-adapted CAViaR

We first review the CAViaR estimation method introduced by Engle and Manganelli (2004). Given a time

series {Yt}Tt=1 the conditional Value-at-Risk is the time series
{
V

(α)
t

}T
t=1

implicitly defined by the equation

α = Prob
[
Yt < −V (α)

t

∣∣∣ It−1

]
. (22)

The quantile regression developed by Engle and Manganelli (2004) allows for the estimation of any

parametric model for V
(α)
t . In testing tail risk spillovers among financial time series, Hong et al. (2009)

adopt the asymmetric slope model that specifies V
(α)
t as

V
(α)
t = β1 + β2 V

(α)
t−1 + β3 Y

+
t−1 + β4 Y

−
t−1, (23)

where the dependence of the β’s from α has been omitted to ease the notation and where the Y +
t−1

(resp. Y −t−1) denotes the positive (resp. negative) part. Volatility clustering implies that a strongly positive

significant β2 is expected. Concerning β3 and β4 they define, respectively, the impact of positive and negative

returns on future Value-at-Risk. Models such that reported in equation (23) are estimated in Engle and

Manganelli (2004) through a quantile regression. In estimating model (23) on equity and bond returns we

adopt the same procedure as well (see Section 6 of Engle and Manganelli, 2004, for more details). For our

purposes, however, we have to take particular care since we are aimed at producing fully-causal time series

of conditional Value-at-Risk of equity and bonds. Hence we have to fix two main issues. First, we want to

have time series that are comparable with each other and then we have to mitigate the asynchronicity due

to the different time zones of the countries in our dataset. Second, having in mind a Granger-type analysis,

at each point in time only past information should be used to produce the Value-at-Risk estimates.

We start our procedure with a “training” window of six years. More precisely, to compute the initial

value of the VaR time series, we use a window starting in tstart = January, 1, 2001 and ending at t
(0)
end =

January, 1, 200619. Then, for a given series either of equity log-returns or of bond yield variations, we

estimate the model of Eq. (23). Hence, the final date t
(0)
end is shifted by one month producing a new final

date t
(1)
end = t

(0)
end + 1 month and the estimation procedure, now using data from tstart up to t

(1)
end is repeated.

The generic n-th time window is thus formed using data from tstart up to t
(n)
end ≡ t

(0)
end + n months. The

procedure is iterated over n until the end of the time stamp is reached, that is when the shifted final date

t
(n)
end occurs after February, 14, 2014, which is the last available day for all time series in the dataset.

The outcome of the procedure is the set of hit series ZBi,t = 1{
Yi,t<−V (α)

i,t (ϑ̂i)
} where t spans across the

2-days time grid, Yi,t is either the series of bond yield variations or the series of equity log-returns, V
(α)
i,t

(
ϑ̂i

)
is the series of the estimated Value-at-Risk of Yi,t, and ϑ̂i = {βi, i = 1, ..., 4} is the parameter vector. We

stress that, as mentioned in Section 5, while all the information available up to t
(n)
end is used to estimate

the parametric model (23), the networks of Granger causalities adopts only data in the three years prior to

t
(n)
end, as a trade-off between the power of the causality tests and the necessity of isolating periods of financial

distress.

In Tables 2-3 we report the estimated β’s and the corresponding p-value (in brackets) for, respectively,

the 36 sovereign debt bonds and the 33 systemically important financial institutions in our dataset, estimated

using the entire time span. Numbers in bold identify 99% significant parameters. The adequacy of the fit is

measured by the p-value of the Dynamical Quantile (DQ) test of Engle and Manganelli (2004) reported in

19This choice does not affect country whose series is not available before January, 1, 2006. In fact, before proceeding to the
estimation of the CAViaR model, we require that at least 100 (daily) observations of the series are present. This limitation is
required since we initialize the CAViaR estimation with the first 10% of the series, hence a reasonable number of observations

must be present in order to have a reliable estimate of V
(α)
0 in (23).
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Table 2: Parameter estimates of the model (23) for daily time series of sovereign bond yield variations.

Country Bond

AUSTL BUL CAN SWI CZH DNK AUSTR BEL CRO CYP FIN FRA
β1 0.0031 0.0243 0.0002 -0.0007 0.0028 0.0014 0.0026 0.0028 0.0106 0.0002 0.0014 0.0019

(0.08) (0.00) (0.38) (0.22) (0.10) (0.10) (0.21) (0.02) (0.06) (0.39) (0.08) (0.09)
β2 0.9297 0.7972 0.9537 0.9357 0.8969 0.9391 0.9003 0.9016 0.7174 0.9215 0.9405 0.9046

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
β3 0.0424 0.7558 0.0734 0.1573 0.1477 0.0901 0.1785 0.2220 0.3821 0.2101 0.0969 0.1876

(0.21) (0.00) (0.01) (0.01) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
β4 0.1440 −0.2136 0.1125 0.1711 0.1952 0.1020 0.1256 0.0927 0.4085 0.1415 0.0952 0.1379

(0.02) (0.00) (0.00) (0.01) (0.00) (0.00) (0.03) (0.03) (0.00) (0.24) (0.05) (0.06)
DQ 0.88 0.58 0.51 0.20 0.99 0.69 0.75 0.54 0.70 0.90 0.58 0.79

GER GRE HUN IRE ITA NET POL POR SLO SPA SLK UK
β1 0.0017 0.0004 0.0052 0.0017 0.0016 0.0017 0.0013 -0.0024 0.0001 0.0014 0.0016 0.0013

(0.08) (0.43) (0.00) (0.25) (0.18) (0.02) (0.08) (0.25) (0.35) (0.03) (0.19) (0.16)
β2 0.9349 0.9278 0.8508 0.8015 0.8014 0.9354 0.9256 0.8605 0.9748 0.8865 0.9021 0.9599

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
β3 0.0901 0.1826 0.2208 0.4397 0.5718 0.1031 0.1151 0.4621 0.0790 0.3688 0.2008 0.0389

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07)
β4 0.1176 0.1140 0.2128 0.4085 0.2498 0.0932 0.1318 0.2358 0.0258 0.0885 0.1690 0.0775

(0.01) (0.06) (0.00) (0.00) (0.17) (0.01) (0.00) (0.01) (0.08) (0.05) (0.01) (0.01)
DQ 0.08 0.47 0.08 0.75 0.55 0.92 0.18 0.61 0.71 0.90 0.88 0.79

HK JAP MAL NOR NZ ROM SWED SGP TUR RUS US VEN
β1 0.0004 0.0005 0.0554 0.0002 0.0106 0.0033 0.0017 0.0042 0.0082 0.0039 0.0018 0.2404

(0.28) (0.05) (0.00) (0.45) (0.02) (0.20) (0.03) (0.00) (0.12) (0.00) (0.14) (0.04)
β2 0.9357 0.9299 −0.0764 0.9317 0.7891 0.8200 0.9425 0.8710 0.8486 0.8582 0.9129 0.4235

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07)
β3 0.1028 0.2147 0.9976 0.0791 0.1304 0.4692 0.0308 0.1947 0.2900 0.2873 0.1596 0.1854

(0.01) (0.00) (0.00) (0.01) (0.02) (0.05) (0.18) (0.00) (0.05) (0.00) (0.02) (0.09)
β4 0.1472 0.0396 0.0320 0.2060 0.3472 0.3354 0.1366 0.1545 0.3157 0.2392 0.1321 0.4561

(0.00) (0.06) (0.12) (0.00) (0.00) (0.00) (0.00) (0.00) (0.09) (0.00) (0.00) (0.06)
DQ 0.10 0.96 0.51 0.93 0.03 0.13 0.32 0.99 0.82 0.67 0.51 0.65

Note: Sovereign bonds are indicated by the corresponding country acronym. For each β we report in brackets the corresponding
p-value. Parameters with a p-value smaller than 1% are reported in bold. The DQ-test is the p-value of the Dynamical Quantile test
of Engle and Manganelli (2004). A value of the test below 1% means that the hypothesis that the model (23) fits the data is rejected
with a confidence of 1%.

Tables 2-3 for each time series20.

20A p-value below 0.01 means that the hypothesis that model (23) is the true DGP is rejected with 99% confidence.
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Table 3: Parameter estimates of the model (23) for the daily time series of equity log-returns of the 33
systemically important financial institutions.

Equity Ticker

DEXB CS UBS CBK DB SAN BBVA ACA GLE BNP RBS
β1 0.0043 0.0010 0.0006 0.0015 0.0014 0.0006 0.0014 0.0005 0.0011 0.0009 0.0008

(0.03) (0.00) (0.02) (0.01) (0.02) (0.02) (0.00) (0.02) (0.00) (0.00) (0.01)
β2 0.7899 0.9032 0.9264 0.8597 0.8689 0.9290 0.8666 0.9429 0.9102 0.9083 0.9302

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
β3 0.1022 0.0806 0.0412 0.1245 0.1011 0.0054 0.1179 0.0419 0.0460 0.0435 0.0344

(0.00) (0.05) (0.29) (0.04) (0.00) (0.42) (0.00) (0.17) (0.15) (0.17) (0.21)
β4 0.4882 0.2532 0.2132 0.3574 0.3807 0.2421 0.3275 0.1576 0.2658 0.2760 0.2037

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
DQ 0.64 0.96 0.79 0.80 0.50 0.63 0.83 0.60 0.84 0.58 0.67

STAN HSBC LLOY BCS UCG NDA RF COF GS JPM AXP
β1 0.0005 0.0007 0.0004 0.0005 0.0009 0.0013 0.0002 0.0009 0.0008 0.0007 0.0005

(0.05) (0.04) (0.00) (0.20) (0.01) (0.06) (0.25) (0.00) (0.01) (0.12) (0.06)
β2 0.8889 0.8446 0.9483 0.9335 0.9213 0.8503 0.9182 0.9011 0.8868 0.9197 0.8934

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
β3 0.1079 0.1907 -0.0315 0.0202 0.0456 0.1703 0.0938 0.0512 0.1250 0.0933 0.1225

(0.15) (0.00) (0.04) (0.34) (0.21) (0.07) (0.10) (0.13) (0.00) (0.12) (0.00)
β4 0.2857 0.4594 0.2205 0.2228 0.2109 0.3449 0.2214 0.2732 0.2981 0.1627 0.2832

(0.01) (0.00) (0.00) (0.00) (0.02) (0.00) (0.02) (0.00) (0.05) (0.02) (0.00)
DQ 0.91 0.94 0.57 0.26 0.37 0.95 0.75 0.93 0.75 0.56 0.64

BBT BAC BK C FITB MS PNC STT STI USB WFC
β1 0.0003 0.0015 0.0008 0.0009 0.0005 0.0008 0.0001 0.0012 0.0004 0.0001 -0.0000

(0.17) (0.07) (0.03) (0.00) (0.11) (0.00) (0.42) (0.00) (0.11) (0.42) (0.50)
β2 0.9034 0.8398 0.9158 0.9072 0.9498 0.8991 0.9068 0.8554 0.9100 0.8396 0.9086

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
β3 0.1074 0.1337 0.0558 0.0483 0.0055 0.0588 0.0718 0.0979 0.0557 0.1839 0.1065

(0.01) (0.03) (0.05) (0.19) (0.44) (0.05) (0.24) (0.17) (0.28) (0.00) (0.00)
β4 0.3119 0.4188 0.2209 0.2843 0.1541 0.3133 0.3566 0.3985 0.2872 0.5056 0.2978

(0.00) (0.08) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
DQ 0.23 0.70 0.61 0.15 0.96 0.86 0.71 0.66 0.87 0.93 0.22

Note: Equities are indicated by the corresponding ticker. For each β we report in brackets the corresponding p-value. Parameters with
a p-value smaller than 1% are reported in bold. The DQ-test is the p-value of the Dynamical Quantile test of Engle and Manganelli
(2004). A value of the test below 1% means that the hypothesis that the model (23) fits the data is rejected with a confidence of 1%.
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C Summary Statistics

This Appendix reports the summary statistics of the three blocks of data as introduced in Section 4.

Table 4 shows a summary statistics of the series of bond yield variations used for the construction of the

causal network. Moreover, for each country we add the information coming from historical S&P long-term

foreign currency ratings that is explicitly used in the flight-to-quality analysis of Section 6.

Similarly, Table 5 reports a summary statistics for the time series of equity log-returns, which, typically,

are available for longer time periods. As for the bond series, all equity series end at February, 14, 2014.

Note that in both Tables 4 and 5 the number of observations refers to the number of bond yield variations

or equity log-returns in a two-days sub-sampled grid, and thus it is typically half of what it is expected from

a daily time series. As anticipated in the main text, the sub-sampling is required in order to mitigate the

effect of non-synchronous data (equities and bonds may refer to banks or countries that pertain to different

parts of the world).

A third block of data is formed by CDS spreads. This part of the dataset is extensively adopted in

Section 7.1 to define quality measures that are suitable for the proposed out-of-sample forecast exercise and

that are (at least by construction) independent from the S&P country ratings. Table 6 reports a summary

statistics for the CDS spread dataset. It is worth to mention that, despite all bond and equity series end at

February, 14, 2014 (even if the starting date may vary from series to series), all CDS spread series end mostly

at January, 13, 2014, with few exceptions. Moreover, while the summaries for bonds and equities in Tables

4 and 5 are related to one-lag differences (or log-differences) on a two-days subsampled grid, the summary

for CDS spread is relative to the original daily grid. This is because, for a given country, the corresponding

CDS spreads are used in Section 7.1 for the construction of a measure of bond quality in connection with

the bond yield of the same country, hence there are no issues related to non-synchronicity of data. In this

case we also rely on the original daily grid for bond yield as well.
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Table 4: Summary statistic for five-years maturity sovereign bond yield variations.

Country #Obs First Yield First Rating Mean Std Kurt Skew Rat. Initial Rat. Final

Australia 1707 18-Dec-2000 30-Apr-2003 -0.0011614 0.086692 4.1985 0.10344 AAA AAA

Bulgaria 918 17-Jan-2007 28-Feb-2001 -0.0021423 0.26788 11.4813 -0.025379 BB BBB

Canada 1563 06-Feb-2002 01-Jan-2003 -0.0018417 0.070579 5.061 0.15631 AAA AAA

Switzerland 912 05-Feb-2007 05-Jun-2007 -0.0025198 0.048724 11.7672 -0.97995 AAA AAA

Czech Rep. 1707 22-Dec-2000 26-Feb-2001 -0.0032534 0.072267 13.8517 -0.12909 AA AA

Denmark 1707 18-Dec-2000 26-Nov-2002 -0.0024144 0.066528 4.6618 0.19488 AAA AAA

Austria 1707 18-Dec-2000 29-May-2001 -0.0022451 0.069703 8.0128 0.14315 AAA AA

Belgium 1707 18-Dec-2000 31-Jan-2001 -0.0021455 0.079765 17.4321 -0.28795 AA AA

Croatia 1707 23-Feb-1999 04-Jan-2001 -0.0013913 0.073417 12.5473 0.81739 A BBB

Cyprus 1248 08-Jul-2004 01-Feb-2002 0.00288 0.2969 87.3243 2.2977 A BB

Finland 1044 31-Jan-2006 23-Apr-2001 -0.0022283 0.068877 4.6478 -0.0046261 AAA AAA

France 1044 31-Jan-2006 12-Apr-2002 -0.002152 0.072982 6.0037 -0.17405 AAA AA

Germany 1707 21-Dec-2000 02-Jul-2002 -0.0022529 0.068445 4.661 0.09215 AAA AAA

Greece 1249 05-Jul-2004 02-Jan-2001 -0.0019649 0.87615 20.659 0.86456 AA CC

Hungary 1707 26-Jan-1999 28-Feb-2001 -0.00073451 0.12418 127.6168 7.0949 A BB

Ireland 1707 12-Jan-1999 01-Jan-2003 -0.0016136 0.14665 37.0698 -1.4267 AA BBB

Italy 1050 12-Jan-2006 31-Jan-2001 -0.00060661 0.13384 17.3076 -0.59019 AA BBB

Netherlands 1707 19-Dec-2000 31-Jul-2003 -0.0021168 0.066599 4.6625 0.13765 AAA AAA

Poland 1437 27-Jan-2003 04-Jan-2001 -0.0016577 0.071337 26.6904 2.2572 BBB A

Portugal 899 13-Mar-2007 07-Feb-2002 2.3583e-05 0.31568 25.2 0.29047 AA BB

Slovenia 1707 22-Dec-2000 26-Apr-2001 -0.00095375 0.095164 46.5957 3.0981 A A

Spain 1707 21-Dec-2000 31-Jan-2001 -0.0014353 0.11052 17.1361 -1.0718 AA BBB

Slovakia 1260 04-Jun-2004 24-May-2001 -0.0026884 0.071821 12.7855 0.29499 BBB A

United Kingdom 1707 21-Dec-2000 27-Oct-2004 -0.001923 0.068336 5.2821 -0.00094986 AAA AAA

Hong Kong 1036 22-Feb-2006 02-Jul-2002 -0.0026838 0.070906 6.4891 0.33106 A AAA

Japan 1707 21-Dec-2000 04-Jan-2001 -0.00044238 0.034059 8.13 0.5942 AA AA

Malaysia 885 19-Apr-2007 23-Apr-2001 0.00050054 0.099712 245.6309 -0.70101 BBB A

Norway 1707 27-Dec-2000 24-Oct-2003 -0.0021842 0.074505 7.0371 0.06374 AAA AAA

New Zealand 892 02-Apr-2007 31-Jul-2003 -0.0025713 0.070055 5.8272 0.10122 AA AA

Romania 912 02-Feb-2007 11-Feb-2002 -0.0024293 0.22238 39.5595 0.066911 B BB

Sweden 1201 17-Nov-2004 04-Jan-2001 -0.001455 0.065942 6.4749 -0.35297 AA AAA

Singapore 943 08-Nov-2006 18-Jul-2003 -0.0016856 0.061072 10.2324 0.57176 AAA AAA

Turkey 1209 25-Oct-2004 19-Jan-2001 -0.007365 0.46916 84.4745 2.0867 B BB

Russia 1707 03-Jan-2000 23-Apr-2001 -0.0076673 0.15226 23.197 0.51217 BB BBB

United States 1153 31-Mar-2005 01-Dec-2003 -0.0023223 0.089286 5.4863 0.21661 AAA AA

Venezuela 668 17-Dec-2008 26-Feb-2001 -0.0071942 0.33779 5.7275 0.13542 B B

Note: Summary statistic for the bond sample. The first column is the name of the country. The second column indicates the total
number of available observations, that is the total number of innovations (one-lag differences of bond yields) in the two-days sub-sampled
grid. Despite the starting date may vary from series to series, the ending date is February, 14, 2014 for all the countries. The third
column is the starting date of the series, that is when the first yield is available. The fourth column indicates when the first S&P rating
is available. Mean, Std, Kurt and Skew indicate, respectively, mean, standard deviation, kurtosis and skewness of the corresponding
series for the entire sample. Finally, the last two columns indicate, respectively, the initial and final S&P rating.
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Table 5: Summary statistic for equity log-returns.

Ticker #Obs First Price Mean Std Kurt Skew

DEXB 1707 07-Oct-1999 -0.0035184 0.072745 15.2732 0.079262

CS 1643 27-Jun-2001 -0.00048936 0.038509 11.2898 0.32927

UBS 1681 14-Mar-2001 -0.00043545 0.03446 11.2177 -0.079069

CBK 1707 22-Apr-1998 -0.00054483 0.03749 10.5217 -0.052093

DB 1707 22-Apr-1998 -0.0015446 0.044453 10.2787 -0.41609

SAN 1707 22-Apr-1998 -0.00033222 0.031501 6.3791 0.062805

BBVA 1707 29-Dec-1999 -0.00034258 0.032301 6.446 -0.023647

ACA 1602 22-Oct-2001 -0.00035503 0.038336 8.253 -0.09679

GLE 1707 22-Oct-1998 -0.0002281 0.041138 7.6145 -0.1066

BNP 1707 22-Oct-1998 0.00017214 0.036591 8.1942 0.050653

RBS 1707 24-Mar-1999 0.00016734 0.032294 11.1185 -0.17534

STAN 1707 04-Feb-1999 -0.00021892 0.025165 16.1126 -0.86996

HSBC 1707 02-Feb-1999 -0.0010079 0.046532 24.338 -1.4578

LLOY 1707 02-Feb-1999 -0.00033476 0.046943 26.2879 0.26912

BCS 1707 10-Dec-1998 -0.0015173 0.053786 163.7187 -7.4101

UCG 1707 19-Aug-1998 -0.00099158 0.036409 9.1553 -0.11276

NDA 1707 22-Jun-1998 0.00038478 0.02919 8.9226 0.15603

RF 1707 14-Dec-1998 0.00034582 0.032113 13.4261 0.07461

COF 1707 26-Apr-1999 -1.6519e-06 0.029675 16.539 0.56877

GS 1707 14-Dec-1998 -0.00019598 0.042239 21.9987 -0.21996

JPM 1122 27-Jun-2005 4.1355e-05 0.030608 11.4117 -0.38165

AXP 1707 27-Apr-1999 6.3366e-05 0.043883 16.9162 -0.50853

BBT 1707 14-Dec-1998 -0.0013513 0.045729 21.7681 -0.57551

BAC 1707 18-Jun-1999 -0.00061847 0.052349 69.6301 2.3045

BK 1707 15-Jun-1999 0.00025387 0.032615 10.7813 -0.1228

C 1707 10-May-2000 0.00010819 0.033869 10.7917 -0.082293

FITB 1707 15-Dec-1998 -0.00042313 0.053264 70.7717 1.4406

MS 1707 16-Jun-1999 5.7451e-05 0.035257 36.7378 -1.5176

PNC 1187 27-Dec-2004 -0.0010434 0.052744 16.4883 0.27674

STT 1707 18-Jun-1999 7.2277e-05 0.039327 58.6034 -2.9936

STI 1707 23-Oct-1998 -0.00031073 0.041151 34.4266 1.1071

USB 1707 18-Jun-1999 0.00017 0.032021 26.1179 -0.4025

WFC 1707 14-Dec-1998 0.00029344 0.03257 20.9868 -0.35808

Note: Summary statistic for the equity sample. The first column indicates the bank ticker. The second column indicates the total
number of available observations, that is the total number of innovations (one-lag log-differences of equity log-prices) in the two-days
sub-sampled grid. Despite the starting date may vary from series to series, the ending date is February, 14, 2014 for all the equities. The
third column is the starting date of the series, that is when the first price is available. Mean, Std, Kurt and Skew indicate, respectively,
mean, standard deviation, kurtosis and skewness of the corresponding equity for the entire sample.
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Table 6: Summary statistic for five-years maturity CDS spread variations.

Country #Obs First Obs. Last Obs. Mean Std Kurt Skew

Australia 2697 30-Apr-2003 13-Jan-2014 8.4894e-07 0.00021067 26.3281 0.51716

Bulgaria 3342 28-Feb-2001 13-Jan-2014 -1.1356e-05 0.00088362 99.5856 -2.9087

Canada 2283 11-Sep-2003 13-Jan-2014 -1.3333e-06 0.00013204 34.555 -1.851

Switzerland 1308 05-Jun-2007 13-Jan-2014 -1.9349e-06 0.00025046 41.9152 -0.89803

Czech Rep. 3251 26-Mar-2001 13-Jan-2014 1.0436e-06 0.00034909 51.6964 0.45145

Denmark 2877 26-Nov-2002 13-Jan-2014 5.9399e-07 0.00018683 27.1692 0.44277

Austria 3295 29-May-2001 13-Jan-2014 9.8893e-07 0.00030032 37.8286 1.136

Belgium 3374 31-Jan-2001 13-Jan-2014 1.1869e-06 0.00038992 38.4293 -0.79271

Croatia 3398 04-Jan-2001 13-Jan-2014 1.792e-06 0.0007084 30.0985 -0.52374

Cyprus 2785 01-Jul-2002 13-Jan-2014 2.663e-05 0.0016567 99.2018 1.4096

Finland 2983 01-Jul-2002 13-Jan-2014 5.1689e-07 0.00011401 22.0623 0.92094

France 3061 12-Apr-2002 13-Jan-2014 1.5933e-06 0.00026709 23.924 -0.26315

Germany 2946 02-Jul-2002 13-Jan-2014 6.9075e-07 0.00014363 19.351 0.225

Greece 3036 02-Jan-2001 13-Jan-2014 0.00074927 0.02616 547.4371 13.5898

Hungary 2816 28-Feb-2001 29-Dec-2011 2.0483e-05 0.00083989 47.3315 1.7824

Ireland 2878 01-Jan-2003 13-Jan-2014 3.623e-06 0.0010063 45.6246 -0.62625

Italy 3379 31-Jan-2001 13-Jan-2014 4.3708e-06 0.0006985 26.7496 0.12638

Netherlands 2316 31-Jul-2003 13-Jan-2014 1.0806e-06 0.00019783 25.9883 1.0971

Poland 3372 04-Jan-2001 13-Jan-2014 1.0346e-06 0.00049855 35.175 0.12573

Portugal 3113 07-Feb-2002 13-Jan-2014 8.9085e-06 0.0014123 39.4631 -0.44806

Slovenia 3106 01-Feb-2002 13-Jan-2014 5.5031e-06 0.0004897 47.888 2.0997

Spain 3361 26-Feb-2001 13-Jan-2014 3.7635e-06 0.00070193 21.9508 -0.57469

Slovakia 3277 24-May-2001 13-Jan-2014 -1.9518e-06 0.00035572 31.4529 1.2219

United Kingdom 1991 20-Mar-2006 13-Jan-2014 1.2377e-06 0.00021594 15.3519 -0.2338

Hong Kong 2479 29-Aug-2003 13-Jan-2014 1.1084e-06 0.00029628 65.5134 3.1484

Japan 3380 04-Jan-2001 13-Jan-2014 9.6021e-07 0.00019432 59.3879 2.3455

Malaysia 3321 23-Apr-2001 13-Jan-2014 -1.3894e-06 0.00056761 159.714 1.0161

Norway 2657 24-Oct-2003 13-Jan-2014 4.1095e-07 0.00011122 47.1808 0.64787

New Zealand 2429 31-Jul-2003 13-Jan-2014 1.7824e-06 0.00028063 36.5511 0.46946

Romania 3051 21-Mar-2002 13-Jan-2014 -1.1689e-05 0.0010779 96.6887 -2.8478

Sweden 3008 29-May-2001 13-Jan-2014 3.2633e-07 0.00015686 31.691 0.50626

Singapore 1896 18-Jul-2003 23-Mar-2012 4.8426e-06 0.00016737 547.7068 17.8006

Turkey 3387 19-Jan-2001 13-Jan-2014 -8.7661e-06 0.0014769 72.3195 3.6072

Russia 3215 18-Sep-2001 13-Jan-2014 -1.8761e-05 0.0012738 88.5448 2.6698

United States 2581 01-Dec-2003 13-Jan-2014 1.0715e-06 0.00012687 20.2746 0.79051

Venezuela 3361 26-Feb-2001 13-Jan-2014 1.5273e-05 0.003007 57.8959 0.54851

Note:Summary statistic for the CDS spread sample. The first column is the name of the country. The second column indicates the
total number of available observations, that is the total number of CDS spreads (one-lag differences) sampled at daily frequency. The
third column is the starting date of the series, that is when the first CDS spread is available. The fourth column indicates when the
series ends. Note that, differently from the bond yield and equity series, not all CDS series end at the same date, this is why the
termination date is reported here for CDS spreads but omitted in Tables 4 and 5. Mean, Std, Kurt and Skew indicate, respectively,
mean, standard deviation, kurtosis and skewness of the corresponding series for the entire sample.
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D Granger Causality

Billio et al. (2012) apply the definition of causality as originally defined by Granger (1969). Consider two

time series {Y1,t}Tt=1 and {Y2,t}Tt=1 and the two regressions

Y1,t+1 = b1,1 Y1,t + εt+1

Y1,t+1 = b1,1 Y1,t + b1,2 Y2,t + ψt+1, (24)

where εt+1 and ψt+1 are i.i.d. normal shocks (with possibly non-zero mean). We say that {Y2,t}Tt=1 Granger-

Causes the series {Y1,t}Tt=1, and we write (2 =⇒ 1), at a confidence level α if the F-statistic of the two

regressions

F =

(
T∑
t=1

(
ε̂2
t − ψ̂2

t

))(∑T
t=1 ψ̂

2
t

T − 2

)−1

is larger than the corresponding α-quantile of the F-distribution. Note that with this definition we are not

testing for simultaneous causality. This choice is necessary in order to have a coherent comparison with the

Q1 (M) test, which does not check for simultaneous risk spillover. Note that, if the first of the equation (24)

is the true data generating process, we have

E
[
Y1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
= b1,1 Y1,t.

In particular we also have that

E
[
Y1,t

∣∣∣ {Y1,t−k, Y2,t−k}t−1
k=1

]
= b1,1 Y1,t = E

[
Y1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
.

On the other side, if the second of the (24) is the true data generating process we have that

E
[
Y1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
= b1,1 Y1,t + b1,2 E

[
Y2,t

∣∣∣ {Y1,t−k}t−1
k=1

]
,

while

E
[
Y1,t

∣∣∣ {Y1,t−k, Y2,t−k}t−1
k=1

]
= b1,1 Y1,t + b1,2 Y2,t 6= E

[
Y1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
.

In other words, when testing the Granger (1969)-causality we are testing the null

H0
G : E

[
Y1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
= E

[
Y1,t

∣∣∣ {Y1,t−k, Y2,t−k}t−1
k=1

]
(25)

against the alternative

HAG : E
[
Y1,t

∣∣∣ {Y1,t−k}t−1
k=1

]
6= E

[
Y1,t

∣∣∣ {Y1,t−k, Y2,t−k}t−1
k=1

]
. (26)

Hence, since Prob
[
Yi,t < −V (α)

i,t

∣∣∣ Ft−1

]
= E [Zi,t | Ft−1], the main difference between the couple of null-

alternative hypotheses in (25)-(26) and those in (3)-(4) is the substitution of the series Yi,t with the hit

function Zi,t, which signals the presence of tail events.

In order to avoid spurious detections (induced by heteroskedasticity) of causalities in the Granger (1969)-

causality network we follow the procedure adopted by Billio et al. (2012) and we filter out a GARCH(1, 1)

model from data. That is, for each time series Yi,t, we estimate the model

33



{
Yi,t = µi + σi,t εi,t, εi,t ∼ N (0, 1) ,

σ2
i,t = ωi + αi (Yi,t−1 − µi)2

+ βi σ
2
i,t−1,

(27)

and the we normalize each time series by re-defining

Yi,t ≡
Yi,t
σ̂i,t

,

where σ̂i,t is the estimated conditional volatility of model (27). This filtering is not required for the tail

risk networks since heteroskedasticity is, in these cases, accounted for the parametric conditional Value-at-

Risk model.

E Monte Carlo Estimation of the Confidence Intervals of the Cen-

trality Measures

Figures 2 and 3 report the percentage of 5%-significant links in the bi-partite network of equity-bond,

estimated in a rolling time-window of three years. In the ideal case in which the network is estimated via

an infinite time series, both the causal test and the estimation of the VaR model in (23) or the GARCH

model in (27) are immune by estimation errors. In this case we expect 5% of the equity-bond couples to

be validated under the null of no-causal connection among them. In practice, finiteness of the sample and

numerical errors in the estimation procedure could result in higher rejection rates under the null. In order

to validate the statistical significance of the results shown in Figures 2 and 3 we perform a simple Monte

Carlo experiment. For each equity and bond series in the dataset we randomly extract with replacement 400

observations from the corresponding time-series, hence forming a new set of 33 equity log-returns and 36

bond yield variations. The choice of 400 observations is dictated by the need of reproducing the sample size

used for the estimation of the causal networks. After a new set of bootstrapped equity-bond data is formed,

we proceed in the estimation of the three casual networks and we record the percentage of validated links at

5% confidence level. We iterate this procedure for 1000 times and we plot in Figure 10 the density plots of

the three percentages of validated links, one for each type of causality. The horizontal lines in Figure 2 and

3 are in correspondence of the average percentage of 5%-validated links computed over the 1000 replications.

These values are 6.8%, 6.6% and 5.2% for, respectively, the (Ej =⇒ BBuy
i ), (Ej =⇒ BSell

i ) and (Ej =⇒ Bi)

causal networks. The slightly larger values found for the networks of tail causality is mainly a consequence

of the unavoidable smaller statistics of the tail events.
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Figure 10: The black (continuous), the red (dotted) and the blue (with filled circles) lines represent, respec-

tively, the density of the percentage of 5%-significant links according to the (Ej =⇒ BBuy
i ), (Ej =⇒ BSell

i )
and (Ej =⇒ Bi) causality test. The density is computed over 1000 replications of a bootstrap procedure in
which, for each replication, a new set of 33 equity log-returns and 36 bond yield variations is formed by ran-
domly extracting with replacement 400 observations from the original time series. Densities are normalized
to have an integral equal to one.
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F Results on other proxies

Nested models comparison with dependent variable sSi,t.
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Figure 11: This figure depicts, for each time-window t = 1, ..., 99 whose closure is at day et (reported in the
horizontal axis), the t-statistic of βt in (15) where the dependent variable Yi,t is the ranking of the variable
sSi,t defined in (13) and computed in the forecasting horizon (et, et +H], with H = 360. Each column
corresponds to a different regressor Xi,t in (15). More precisely, Xi,t = HB+

i,t for the first, Xi,t = HB−i,t for the
second and Xi,t = Hi,t for the third. A black point is reported whenever the regression (16) is significantly
better (according to the log-likelihood ratio test of Vuong (1989) with 95% confidence) than the simple
auto-regressive model (14). Horizontal red dotted lines are in correspondence of 95% confidence level of the
standard Normal distribution.
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