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Abstract

The realized volatility of financial returns is characterized by persistence and oc-
currence of unpredictable large increments. To capture those features, we introduce
the Multiplicative Error Model with jumps (MEM-J). When a jump component
is included in the multiplicative specification, the conditional density of the real-
ized measure is shown to be a countably infinite mixture of Gamma and K dis-
tributions. Strict stationarity conditions are derived. A Monte Carlo simulation
experiment shows that maximum likelihood estimates of the model parameters are
reliable even when jumps are rare events. We estimate alternative specifications of
the model using a set of daily bipower measures for 7 stock indexes and 16 individual
NYSE stocks. The estimates of the jump component confirm that the probability
of jumps dramatically increases during the financial crises. Compared to other real-
ized volatility models, the introduction of the jump component provides a sensible
improvement in the fit, as well as for in-sample and out-of-sample volatility tail
forecasts.
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1 Introduction

A great deal of the recent literature on volatility modeling exploits realized volatility

measures as ex-post estimates of the return variation over a given horizon. The recent

financial crisis has been an important test for existing volatility models. In general, models

of realized measures are unable to fit the abnormal levels reached by the volatility during

the financial turmoil. This seems to call for a more realistic econometric specification of

such models. The inclusion of jumps in the volatility process is a step forward a more

appropriate description of the volatility dynamics. Recently, the analysis of jumps in

prices and volatility, and their interactions, in a continuous-time framework has shown

the importance of both components in fitting the observed dynamics of prices, see e.g.

Chernov et al. (2003), Duffie et al. (2000), Pan (2002), Eraker (2004), Eraker et al. (2003),

Jones (2003), Broadie et al. (2007), Todorov and Tauchen (2011), Andersen et al. (2012),

Bandi and Renò (2012, 2013).

In a discrete-time setting, the analysis has focused on the role that jumps in prices

have in predicting the future volatility. Andersen et al. (2007) extend the HAR-RV model

to include past price jumps, i.e. the HAR-RV-J model. Instead Caporin et al. (2014)

explicitly model the volatility jumps in a HAR setup. This allows a direct estimation of

volatility jumps which is used to analyze the economic determinants. One of the results

of their analysis is that volatility jumps increase significantly the fit of the model in the

right tail. It emerges that it is important to allow for the presence of jumps because

this component can contribute to explain the level of the daily volatility during periods

of market turmoils. One limitation of the HAR models in the log-transformed volatility

series is that to obtain the forecasts distribution of the levels can be problematic.

We propose the Asymmetric HAR-MEM-J (AHAR-MEM-J) which is an extension of

the multiplicative error model (MEM) by Engle (2002) and Engle and Gallo (2006). We

extend the MEM approach to the modeling of the realized measures by including a latent

process, labeled jump, that causes infrequent large moves in the volatility. The AHAR-

MEM-J is a three-factor model: first, a long-run factor, modeled by the Asymmetric

HAR, which replicates the long-run dependence present in volatility; second, a short-run

factor, which represents the transitory component of the volatility process; and third,

the jump factor, which is responsible for the presence of realizations in the right tail of

volatility distribution. For an analogous interpretation, see Ghysels et al. (2004). Thanks

to the availability of realized volatility measures which sterilize the effect of price jumps

on volatility, we can easily focus on time series that include only volatility jumps, if they

are present. Modeling the volatility by including a jump process increases the model’s

capability of capturing extreme movements, or tail events. Potential sources of jump

innovations to volatility can be important news, data releases, or unexpected events, which

might induce market participants to suddenly revise their portfolios, thus producing large
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variations in the volatility level. During the financial crises of 2008 the volatilities of stock

markets across the world have experienced such abnormal movements.

Our approach is similar to that of Bauwens and Veredas (2004). We specify the

volatility process as a combination of a continuous volatility component and a discrete

compound Poisson process for the jumps; the two elements determine the level of the

volatility in a multiplicative framework. It follows that the conditional density of the

realized measure is a countably infinite mixture of two random variables: one distributed

as a Gamma, and the second, when the number of jumps is strictly larger than zero, is

distributed as a Kappa, henceforth K. The K is a product distribution, known in physics

and radar applications, but never used in econometrics, to the best of our knowledge. The

K is obtained as the product of two Gamma-distributed random variables. Exploiting

the knowledge of the mixture density that characterizes the conditional distribution of

the observed volatility measure, it is possible to obtain in closed form the conditional

moments, the likelihood function and the quantiles. In order to account for the empirical

evidence of jump clustering, the intensity parameter, governing the jump occurrence in

the compound Poisson process, is specified in a time varying form, according to an au-

toregressive specification, in the spirit of Hansen (1994) and Maheu and McCurdy (2004).

For what concerns the continuous volatility component, we have adopted an Asymmetric

Heterogeneous Autoregressive (AHAR) specification. A common finding in the empiri-

cal literature that employs MEMs in volatility modeling is indeed that the estimates of

GARCH-type specifications of the conditional mean turn out to be close to be integrated.

Such an evidence highlights the necessity of having a mean model specification that takes

into account the persistence observed in the realized measure series. Our empirical results

confirm this finding. Indeed, the HAR specification sensibly improves the fit compared

to simpler, and less persistent, specifications of the continuous volatility component. The

model parameters can be estimated by maximum likelihood methods. However, given the

mixture structure, different local maxima may exist, see Frühwirth-Schnatter (2006). For

our model, a Monte Carlo simulation experiment shows the appropriateness of the finite-

sample features of maximum likelihood estimation. In addition, the maximum likelihood

estimates of the jump component seem to be reliable, even when jumps are rare events.

The empirical application is based on daily bipower volatility series of individual stocks

and equity indexes. The estimation results highlight a positive probability of jumps in

volatility, which is consistent with the findings of previous studies on the topic. The

AHAR-MEM-J with time-varying jump intensity allows for a greater flexibility in ac-

commodating extremely large volatilty realizations, dramatically improving the fit of the

baseline MEM. By analogy to the Value-at-Risk (VaR), we introduce the Volatility-at-

Risk (VolaR) which constitutes a natural measure of risk when designing volatility trading

strategy. The evaluation of the VolaR estimation provided by alternative specifications is

in favour of the MEM-J against models without jumps.
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In summary, the contributions of the paper are at least three. Firstly, we generalize

the baseline MEM of Engle and Gallo (2006) by including a jump term, which captures

the occasional boosts of volatility, and a pseudo long-memory component which is able

to account for the observed persistence. Secondly, the conditional density of the model’s

dependent variable is derived as well as the log-likelihood function. Finally, we provide

evidence that the jumps are a relevant component of the realized measure series, thhus

supporting the claim that ignoring them might lead to an under-estimation of the VolaR.

This under-coverage of the right tail of the volatility density leads to an underestimation

of the volatility risk especially in periods of markets turmoils, with consequences for the

pricing of derivatives and volatility trading strategies.

The paper is organized as follows. Section 2 sets the notation of the baseline MEM.

Section 3 describes the MEM-J and the finite mixture distribution that characterizes the

conditional density of the model’s dependent variable. Conditional moments are also pre-

sented. Section 4 discusses both model extensions with HAR dynamics and time-varying

parameters, and the model’s properties, such as conditions for covariance stationarity and

maximum likelihood estimation. Section 5 illustrates the empirical results. In particular,

Subsection 5.1 describes the dataset and the construction of the volatility series, while

the subsection 5.2 provides a discussion of the empirical results obtained with stocks in-

dexes and individual S&P 500 stocks under different model specifications; in subsection

5.3 results with alternative MEM specifications are presented. In Section 6 the results

of the VolaR analysis are reported and discussed. Finally, Section 7 concludes. Proofs,

selected derivations of relevant quantities and additional theoretical details are included

in Appendix A. A Web Appendix also contains some additional results and details on the

K distribution.

2 The baseline MEM

In this section we briefly present the MEM, in its simplest form, as introduced by Engle

and Gallo (2006). Let RMt be the daily realized volatility measure.1 We assume that

RMt follows a general MEM, i.e.

RMt = µtεt (1)

with

µt = ω + α′Xt−1 + βµt−1

1We assume that the realized volatility measure used in the empirical analysis is corrected for mi-
crostructure noise and filtered from price jumps. The estimator adopted in the present paper is briefly
described in Section 5.1.
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and where Xt−1 is a vector that contains variables included in the information set at time

t−1. Moreover, the innovation εt is a random variable with scale-shape Gamma density2

εt|It−1
iid∼ Γ

(
1

ν
, ν

)
(2)

f (εt|It−1) =
1

εt
(εtν)

ν 1

Γ (ν)
e−εtν , εt ≥ 0 (3)

where 1
ν
is the scale and ν is the shape of the Gamma density, both driven by the common

parameter ν. In this case, we have Et−1 [εt] = 1 and Vt−1 [εt] =
1
ν
. By the properties of the

Gamma distribution (in particular the product of a Gamma-variate by a scalar assuming

it is known or included in the information set) we have

f (RMt|It−1) =
1

RMt

(
RMtν

µt

)ν
1

Γ (ν)
e
−

RMtν

µt , RMt ≥ 0.

If the realized measure follows a MEM, the conditional mean and variance are given as

E [RMt|It−1] = µt = ω + α′Xt−1 + βµt−1, (4)

and

V [RMt|It−1] = µ2
tν

−1. (5)

The form of µt is sufficiently flexible to include simple auto-regressive patterns, HAR

terms, asymmetry, or predetermined variables. Examples of possible specifications for

µt are given, among others, in Engle and Gallo (2006) and Brownlees et al. (2012). In-

terestingly, the term µt induces the conditional variance of the realized measure to be

time-varying, thus making the MEM consistent with the so-called volatility-of-volatility

feature, studied in Corsi et al. (2008) among others. The literature on multiplicative

models of volatility includes several extensions of the baseline MEM. For example, Gallo

and Otranto (2012) extend the MEM to include time-varying parameters as in the case

of regime-switching MEM. The latter specification allows for changing parameters but

requires to impose a priori structures on the form of the transition and on the number of

underlying regimes. Alternatively, Haerdle et al. (2012) propose to adaptively estimate

the MEM based on a window of varying length and thus providing updated parameter

estimates at each point in time.

2See the Web Appendix for some further details on Gamma, and related, random variables.
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3 A Multiplicative Error Model with Jumps

The baseline MEM with a Gamma distributed error term is poorly designated to account

for the presence of large and abrupt movements, i.e. the jumps, that characterize the

volatility dynamics. The presence and the effects of volatility jumps have been already

documented in the literature either in a continuous time framework, or, in discrete time,

see Caporin et al. (2014), among others. Excluding volatility jumps reduces the fit of

the model to real data, thus resulting in a worsening of the forecasting performance. We

therefore propose a generalization of the MEM of Engle and Gallo (2006), which we call

MEM-J. The new model introduces, in a multiplicative way, an additional volatility jump

term to the standard MEM of Engle and Gallo (2006). The dynamic of the MEM is also

generalized by the inclusion of HAR terms following Corsi (2009), we defer the discussion

of this to Section 4. Under the MEM-J specification, the realized volatility measure RMt

is decomposed into the product of three elements

RMt = µtZtεt (6)

where µt is a function measurable with respect to the information set at time t − 1,

Zt is the volatility jump component, and the innovation εt is a scale-shape Gamma,

εt|It−1 ∼ Γ
(
1
ν
, ν
)
. Hereafter, to simplify the interpretation of the model outcome, the

Gamma density of the innovation term is expressed in the mean-shape representation, i.e.

εt|It−1 ∼ Γ (1, ν), which is, by construction, equivalent to the scale-shape representation.

Hence, a number of assumptions on Zt and εt are required in order to identify and separate

the two sources of shocks. The jump term, Zt, is defined as

Zt =




1 Nt = 0
∑Nt

j=1 Yj,t Nt > 0
(7)

where Nt is a non-negative integer-valued random variable that represents the number of

jumps occurring at time t. When Nt = 0, i.e. jumps are absent, the MEM-J reduces to

the MEM. The random variable determining the occurrence and the number of jumps,

Nt, is modeled as a Poisson with intensity λ,

P (Nt = m|It−1) =
e−λλm

m!
, m = 0, 1, 2, ... (8)

The second characterizing element of Zt defines the size of the jumps. This is determined

by the sum of independent Gamma random variables, Yj,t ∼ Γ (1, ς) (in mean-shape form).

Note that the jump density is not dependent on time and the parameter characterizing

the jump evolution is assumed to be time-invariant.

Assumption 1 In the MEM-J
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i. εt is an i.i.d. process defined on positive support with E[εt] = 1.

ii. εt, Nt and the variables Yj,t, j = 1, 2, . . . , Nt, are assumed to be independent for

any t.

By the properties of the Gamma density,3 it follows that, if Nt = m > 0,

Zt|Nt = m > 0, It−1 ∼ Γ (m,mς) (9)

in mean-shape representation. It is interesting to note that the jump component has mean

and variance which depend on the number of jumps, i.e. E [Zt|Nt = m > 0, It−1] = m and

V [Zt|Nt = m > 0, It−1] =
m
ς
. So far, all parameters are assumed to be time invariant. In

Section 4 we discuss the introduction of time varying parameters. Additional flexibility

in the model parameters can potentially capture the increase in the jumps contribution

to the overall variability of the volatility during market turmoils.

It follows from equation (6) that the MEM-J can be written as

RMt = µtηt (10)

where the innovation term ηt = Ztεt is the product of two sources of shocks, one depending

on jumps. In the next paragraphs we will study the properties of the conditional density

of ηt and of RMt which clearly depend on the distributional assumptions made on Zt and

εt.

3.1 The conditional density of ηt

The density of ηt depends on the realization of Nt. When Nt = 0, we have that ηt|Nt =

0, It−1 is simply equal to εt|It−1, since Zt = 1. In this case, the conditional density of ηt,

in mean-shape form, coincides with that of εt, i.e.

ηt|Nt = 0, It−1 ≡ εt|It−1 ∼ Γ (1, ν) . (11)

Differently, when Nt = m > 0 the conditional density of ηt given Zt is Gamma in mean-

shape form

ηt|Zt, Nt = m > 0, It−1 ∼ Γ (Zt, ν) . (12)

In order to derive the conditional density of ηt given Nt and It−1, a fundamental element

for the construction of the model likelihood, we have to evaluate the following integral:

∫ ∞

0

f(ηt|Nt = m > 0, Zt, It−1)f(zt|Nt = m > 0, It−1)dz, (13)

3See the discussion in the Web Appendix.

7



where both conditional densities in the integral are Gamma expressed in mean-shape

form. We thus introduce the following proposition (proof in Appendix A).

Proposition 1 Under Assumption 1, consider ηt = Ztεt where Zt defined in (7) has the

conditional density in (9) and εt ∼ Γ (1, ν). Assuming that Zt and εt are independent at

all leads and lags, it follows that

f(ηt|Nt = m > 0, It−1) =
2

ηt

(
ηtςν

)mς+ν
2

1

Γ(mς)Γ(ν)
Kmς−ν

(
2
√
ηtςν

)
, (14)

where Ka (·) is the modified Bessel function of the second kind. Thus the innovation term

ηt, conditional on Nt = m > 0 and It−1, has a K distribution, see Redding (1999), denoted

as

ηt|Nt = m > 0, It−1 ∼ K
(
m,mς, ν

)
.

The first two moments of ηt, conditional on Nt = m > 0 and It−1, are

E [ηt|Nt = m > 0, It−1] = m

V [ηt|Nt = m > 0, It−1] = m2mς + ν + 1

mςν
= m2

(
1

ν
+

1

mς
+

1

mνς

)
.

The K density is governed by three parameters which have specific meanings in our case.

The first parameter is the mean of the K density, and it is equal to the number of jumps,

m. The second parameter depends on the shape of the jump component Zt, while the

third also depends on the shape parameter of the innovation term εt. Additional details

on the K distribution are presented in the Web Appendix. Interestingly, the conditional

variance of ηt is an increasing function of the number of jumps arrivals, m. Hence, periods

with a larger number of jumps arrivals are characterized by a higher volatility-of-volatility.

The innovation term conditional on the information set, It−1, might be seen as char-

acterized by a countably infinite mixture

f(ηt|It−1) = P (Nt = 0|It−1) Γ (1, ν) +

∞∑

m=1

P (Nt = m|It−1)×K (m,mς, ν) , (15)

where

P (Nt = 0|It−1) = e−λ.

The mixing variable is the Poisson process Nt, which depends on the parameter λ. As λ

increases, more weight is given to the K distribution, while when λ = 0 the density of ηt

is Γ (1, ν) and the MEM-J reduces to the MEM.
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3.2 The conditional density of RMt

The conditional density of the realized measure, given Nt = m > 0 and It−1, follows from

the distribution of the term ηt in equation (14). The following proposition reports the

density and the subsequent corollary introduces the conditional moments of RMt.

Proposition 2 Consider model (10) where ηt = Ztεt with Zt defined in equation (7) and

εt ∼ Γ (1, ν). Assuming that Zt and εt are independent at all leads and lags, it follows

that

f(RMt|Nt = m > 0, It−1; θ) =
2

RMt

(RMt

µt

ςν
)mς+ν

2 1

Γ(mς)Γ(ν)
Kmς−ν

(
2

√
RMt

µt

ςν

)
,

(16)

where θ is the vector of parameters. Thus the realized measure RMt, conditional on

Nt = m > 0 and It−1, has a K distribution, denoted as

RMt|Nt = m > 0, It−1 ∼ K
(
mµt, mς, ν

)
.

The first two moments of RMt, conditional on Nt = m > 0 and It−1, are

E [RMt|Nt = m > 0, It−1] = µtm,

V [RMt|Nt = m > 0, It−1] = µ2
tm

2mς + ν + 1

mςν
.

As a result, both the conditional mean and the variance of the RM sequence are not

only time-varying and driven by µt as in the baseline MEM, but also dependent on the

realized number of jumps, m. On the other hand, when jumps are absent, i.e. m = 0, the

conditional density f(RMt|Nt = 0, It−1; θ) is that of the baseline MEM. Integrating out

the realized number of jumps, the density of RMt conditional on the information set It−1

is a countably infinite mixture

f(RMt|It−1; θ) = P (Nt = 0|It−1) Γ (µt, ν) +

∞∑

m=1

P (Nt = m|It−1)×K (mµt, mς, ν) . (17)

The conditional distribution of RMt depends both on the element µt as well as on the

jump intensity, λ. The expected value of Zt can then be used to derive the expected value

of the realized measure RMt.
4 Integrating out the dependence on Nt, it is possible to

obtain the expected value and the variance of RMt with respect to the information set

It−1 only, see Section 4.2.

4See Appendix A.3 for details on the derivation of the moments of Zt.

9



4 A persistent MEM-J with time-varying parameters

The main stylized fact that emerges from the empirical analysis of the financial returns is

that their volatility is characterized by several dynamic and distributional features. High

persistence, leverage effects, clusters of jumps and heteroskedastic effects in volatility are

indeed relevant characteristic that must be addressed by a proper model. In this section,

we show how the MEM-J presented in Section 3 can account for all these features.

4.1 Specification of µt

The role played by the specification of µt becomes clear when looking at the dynamics

of the model’s residuals. As volatility is an highly persistent series characterized by a

slow and hyperbolic decay of the autocorrelation function, it becomes clear that a simple

ARMA(1,1) specification, as implied by the baseline MEM, is not suited to describe such

a rich dynamic behaviour. As a consequence, the model’s residuals display significant

autocorrelation. A successful and simple approach to capture the (pseudo) long-memory

property of the volatility series has been proposed by Corsi (2009) with the HAR model.

The HAR is long autoregressive model, subject to linear constraints, designed to capture

the persistence of the logarithm of realized volatility. We therefore consider two alternative

specifications for µt:

• Asymmetric MEM:

µt = ω + αRMt−1 + βµt−1 + γRM−
t−1 (18)

where RM−
t ≡ RMt · I{rt < 0}. This base specification takes the presence of

asymmetric responses of volatility to the sign of the returns (see Engle and Gallo,

2006), and the coefficient γ captures a stronger response to negative returns, the well

known leverage effect. The baseline MEM can be simply obtained setting γ = 0.

• Asymmetric HAR-MEM (AHAR-MEM), which combines the distinctive elements

of the Asymmetric MEM and the HAR

µt =ω + βµt−1 + α1RMt−1 + α2RMt−1:t−5 + α3RMt−1:t−21 + γRM−
t−1 (19)

where RMt−1:t−5 = 1
5

∑5
j=1RMt−j and RMt−1:t−21 = 1

21

∑21
j=1RMt−j . The restric-

tion α2 = α3 = 0 gives the Asymmetric MEM. Hence, it is possible to test whether

the inclusion of the weekly and monthly volatility terms provide a significant im-

provement in modeling the volatility dynamics.
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4.2 Time-varying jump intensity

The previous specification of the MEM-J is inherently limited given that the Poisson pro-

cess governing the occurrence of jumps and the Gamma density characterizing the jump

size are all driven by time invariant parameters. To increase the model flexibility we intro-

duce time variation in the parameter of the Poisson process. Instead, we maintain a time

invariant jump size since preliminary evaluations of the proposed model show that letting

the parameter to vary across time does not improve upon time-invariant specifications,

but it increases the computational burden associated with the model estimation. Never-

theless, if needed (and supported by the data), even the jump size can be time-varying.

We first specify the dynamic evolution of the parameter λt, i.e. the jump intensity, for

which we suggest the Auto Regressive Jump Intensity (ARJI) specification of Chan and

Maheu (2002). The innovation in the jump intensity dynamic are derived from the jump

probability as follows:

λt = φ1 + φ2λt−1 + φ3ξt−1 (20)

where

ξt = E [Nt|It]− λt =
∞∑

m=0

mP (Nt = m|It)− λt. (21)

The restrictions φ1 > 0 and φ2 > φ3 > 0 are sufficient to guarantee the positiveness of λt

as in Chan and Maheu (2002). Note that the innovation term depends on the conditional

probabilities of observing m jumps given the information set at time t, and those are

determined following the hypothesis of having a Poisson process governing the jumps

number, see (8). However, as the conditioning set is different, those probabilities must

be appropriately evaluated. We will discuss this issue in Section 4.4 when dealing with

the model estimation. From a distributional point of view, letting the mixing parameter

λ to be dynamic implies that the conditional density of RMt in (16) has a time-varying

weight associated with the K density. This provides an extremely flexible specification of

the density of RMt, which can be exploited to infer a precise probability of occurrence of

tail events, see Section 6.5

Proposition 3 Consider model (10) where ηt = Ztεt with Zt defined in equation (7) and

εt ∼ Γ (1, ν). Assuming that Zt and εt are independent at all leads and lags, it follows

that the first two moments of RMt and ηt conditional on It−1 are

E [ηt|It−1] =
(
e−λt + λt

)
, (22)

E [RMt|It−1] = µt

(
e−λt + λt

)
, (23)

5Creal et al. (2013) derives the Generalized Autoregressive Score (GAS) representation for both the
time-varying intensity Poisson process and the dynamic mixtures of models. We believe that an extension
of the MEM-J model within the GAS framework is a natural advancement but this is left to future
investigation.
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V [ηt|It−1] =

[
λt

ς
+ λ2

t

]
(1 + ν−1) + (e−λt + λt)

[
1 + ν−1 − e−λt − λt

]
(24)

V [RMt|It−1] = µ2
t

{[
λt

ς
+ e−λt + (λt + λ2

t )

]
(1 + ν−1)− (e−λt + λt)

2

}
. (25)

The conditional expected value and variance of RMt depend on the time-varying mean

component as well as on the time-varying jump intensity. We stress that the conditional

variance of RMt is time-varying thanks to the evolution in time of both µt and λt, thus

allowing the MEM-J, similarly to the MEM, to capture the volatility-of-volatility effect

studied in Corsi et al. (2008) among others. The above results highlight how the condi-

tional moments of RMt depend on the marginal moments of the jump term. In fact, the

availability of the first and second moments of the jump component potentially allows

for the construction of confidence intervals around the impact of the expected jump. For

example, compared to the baseline MEM, the conditional expectation of RMt is inflated

by a time-varying factor
(
e−λt + λt

)
, which is never smaller than one by construction and

acts as a state-dependent boosting factor, whose introduction is expected to find strong

support in the data.

4.3 Stationarity

We first provide the stationarity conditions for the simple case of time-invariant jump

intensity with µt specified as

µt = ω +

q∑

i=1

αiRMt−i +

p∑

i=1

βiµt−i. (26)

Given the multiplicative structure of the MEM-J, the conditions for strictly stationarity

of RMt can be studied writing (26) in vector form (Markov representation):

zt = bt + Atzt−1. (27)

Theorem 1 For the MEM-J process in (6) with Assumption 1 where ηt is a sequence

i.i.d. random variables with intensity parameter λ, there exist a unique strictly stationary

solution (which is also weakly stationary) if

(e−λ + λ)

q∑

j=1

αj +

p∑

i=1

βi < 1. (28)

Proof in Appendix A.5.

We also remark that if the MEM-J has a second-order stationary solution and if ω > 0

then condition (28) holds. We note that the introduction of the jump term in the MEM-J

is expressed in a different form with respect to the baseline MEM of Engle and Gallo
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(2006). We have a multiplicative term, depending on λ, that impacts only on the ARCH -

related coefficients, those capturing the impact of innovations on the mean-evolution.

This is a consequence of the fact that the jump term, Zt, is a constituent of the model

innovations, ηt, and it is not persistent by construction. Interestingly, the larger the

coefficient λ, the larger is the inflating factor, and the smaller is the stationarity region

given the parameters αi and βi.

We now move to the mode complex case of the time-varying jump intensity. In that

case, we provide a sufficient condition for the stationarity of the MEM-J. Consider the

MEM-J process in (6) with density, conditional to ηt, defined in (16), where ηt is a

sequence of random variables with time-varying intensity parameter λt defined as in (20),

and At = A⊙ Et.

Theorem 2 Given the MEM-J in (6) with Assumption 1 and the processes for λt and

µt specified as in (20) and (26), respectively, a sufficient condition for the existence of a

strictly stationary solution is

ρ(A) < exp(−E[log [(p+ q)(ηt + (p+ q)− 1)]])

where ρ(A) is the spectral radius of A (i.e. the greatest modulus of its eigenvalues).

This second result is less intuitive than in the constant intensity case. Nevertheless,

we stress the sufficient condition depends both on the number of dynamic parameters

affecting µt and on the expectation of the innovation ηt that combined the jump term and

the error term ǫt.

4.4 Maximum likelihood estimation

The AHAR-MEM-J can be estimated by maximum likelihood. Under the maintained

assumption that Nt|It−1 ∼ Poisson(λt) with Nt and εt independent processes, the con-

ditional density of RMt, f (RMt|It−1), can be computed in closed form as in equa-

tion (17).6 Model parameters are estimated by maximizing the sample log-likelihood

ℓ(θ) =
∑T

t=1 log f (RMt|It−1; θ), where f (RMt|It−1) is defined in equation (17) and θ ∈
Θ is the vector of parameters for the AHAR-MEM-J with time-varying λ, i.e. θ =

[ω, β, α1, α2, α3, γ1, γ2, γ3, φ1, φ2, φ3, ς, ν]
′ . The log-likelihood function ℓ(θ) is the log-trasform

of a mixture density. In general, the mixture likelihood function can be unbounded, that

is the function is characterized by the presence of singularities. Thus the ML estimator

as global maximizer of the mixture likelihood function does not exist. Nevertheless, sta-

tistical theory outlined in Kiefer (1978) guarantees that a particular local maximizer of

6The conditional density of RMt involves an infinite sum of densities that depends on the number
of jumps. Therefore, a truncation on the maximum number of jumps m̄ < ∞ is required in practical
applications. See Section 4.5 for a discussion of the choice of m̄.
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the mixture likelihood function is consistent, efficient, and asymptotically normal if the

mixture is not overfitting. Several local maximizers may exist for a given sample, and a

major difficulty with the ML approach is to identify if the correct one has been found,

see Frühwirth-Schnatter (2006).

In the case of estimation of MixNormal-GARCH models, Auśın and Galeano (2007)

and Bauwens et al. (2007) have devised a Bayesian estimation procedures to avoid such

degenerated states. Alternatively, Broda et al. (2013) have proposed an augmented likeli-

hood function. We don’t adopt any of these computational devices since the Monte Carlo

results, reported below, show that this problem is not a major concern in our case.

The information used to evaluate the likelihood function involves the computation of

further quantities that drive the dynamics of the jump intensity, λt. From the Bayes rule,

it follows that the filtered jumps probabilities are equal to

P (Nt = m|It) =
P (RMt|Nt = m, It−1)× P (Nt = m|It−1)

P (RMt|It−1)
, j = 0, 1, 2, . . . (29)

which are then used to recover the jump intensity innovations in equation (21).

4.5 Monte Carlo Simulations

We run a set of Monte Carlo simulations to explore the performance of the ML estimation

of MEM-J in finite samples. We simulate three different specifications with the same µt as

in (19) with no asymmetric effect: HAR-MEM (model in (1)), HAR-MEM-J with constant

λ (model in (6)) and HAR-MEM-J with time-varying λt (model in (6) with λt specified as

in (20)). The algorithm to simulate pseudo-random variates from aK density is illustrated

in Appendix B. The parameters used in simulation and the results are reported in Table

1. The simulated sample size is set equal to 3000. Due to the computational burden in

estimating the MEM-J the Monte Carlo replications are 500. We investigate the effects

that the over-specification of the jump component can have on the maximum likelihood

estimates. This can be a typical situation which arises when we have to specify nonlinear

models with latent components. We estimate over-specified models (upper and middle

panel of Table 1), i.e. the HAR-MEM-J with time-varying jump intensity, when the data

have been generated with either λ equal to zero (i.e. φ1 = φ2 = φ3 = 0) or with a

constant λ. The infinite sum of densities required to compute the likelihood, see (15), is

truncated at m̄ = 10. For values of λ that are rarely larger than 1, the probability of

observing more than 10 jumps is of order 10−8. When the jumps are totally absent, the

unconditional mean of λt =
φ1

1−φ2
is estimated almost equal to zero, meaning that there

is a very limited mixing effect in the conditional density of RMt due to the estimated

jump term. This means that the estimated model is very close to the HAR-MEM which

is the DGP. Indeed, the parameters governing µt are estimated correctly and with small
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RMSE. It should also be noted that the parameter ς is not defined under the DGP, but

is estimated when fitting the HAR-MEM-J on the data as it determines the shape of the

K distribution. When jumps are absent, i.e. λ = 0, the parameter ς is not identified, this

is reflected in a very high RMSE.

When the jumps are present, but λ is constant, the impact of the over-specification is

fairly limited, see the middle panel of Table 1, and the distribution of all parameters is

centered on the true values. The estimate of the parameter φ3 is close to zero with a quite

large RMSE. This evidence also confirms that the HAR-MEM-J with time varying jump

intensity is identified also when λ is constant and the estimated model is overspecified.

This means that the sources of variation in E [RMt|It−1], i.e. µt and λt, are separately

identified. In fact, if we look at the estimates of the HAR parameters, they seem unaffected

by this misspecification. In the third case considered, which is the estimate of the correctly

specified model, the maximum likelihood estimates have a very small finite sample bias

and the RMSE’s of φ1/(1−φ2), φ2 and φ3 have the same order of magnitude of the other

parameters. In Figure 1, the kernel density estimates of the Monte Carlo distribution

are displayed. The plots show that the finite sample distributions for all parameters are

centred on the true values. Furthermore, the Monte Carlo estimates based on the mixture

density are well behaved and we don’t find any evidence of the presence of multiple local

maxima.

ω α1 α2 α3 β ν ς φ1

1−φ2

φ2 φ3

DGP: λ = 0
0.001 0.4 0.15 0.1 0.3 20 0 0 0 0

Mean 0.001 0.399 0.148 0.097 0.302 20.106 38.010 0.009 0.599 0.254
RMSE 0.000 0.021 0.069 0.023 0.076 0.577 40.972 0.033 0.636 0.334

DGP: λ = 0.25
0.001 0.4 0.15 0.1 0.3 35 20 0.25 0 0

Mean 0.001 0.400 0.152 0.099 0.296 34.957 20.625 0.250 0.479 0.019
RMSE 0.000 0.017 0.050 0.017 0.056 1.646 3.710 0.018 0.611 0.033

DGP: λt > 0
0.001 0.4 0.15 0.1 0.3 35 20 0.2 0.95 0.1

Mean 0.001 0.400 0.147 0.100 0.301 35.011 20.620 0.201 0.931 0.106
RMSE 0.000 0.018 0.056 0.018 0.062 1.394 4.051 0.027 0.060 0.034

Table 1: Monte Carlo results. The true parameter values used in simulation are in bold.
Sample mean and Root mean squared error (RMSE) of maximum likelihood estimates of
simulated HAR-MEM’s models.
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Figure 1: Kernel densities of the Monte Carlo estimates of the MEM-J-λt, where λt varies
according to (20).

5 Empirical Results

5.1 Database and estimation of volatility

Our purpose is to model realized measures to estimate the probability and the size of

the volatility jumps once that price jumps have been disentangled from the volatility

dynamics. Indeed, when price jumps are present, the total price variation, or quadratic

variation, is equal to the sum of integrated volatility plus the squared price jumps. The

quadratic variation can be estimated by the sum of the intraday squared returns, r2tj , i.e.

16



the realized volatility (or realized variance), RV,

RVt =

M∑

j=1

(ptj − ptj−1
)2 =

M∑

j=1

r2tj t = 1, ..., T (30)

where rtj ≡ ptj − ptj−1
is the intraday return and M is the number of intraday observa-

tions. The realized volatility converges to the integrated variance plus the squared jump

component. Barndorff-Nielsen and Shephard (2004), have shown that RV allows for a

direct nonparametric decomposition of the total price variation into its two separate com-

ponents: a continuous part, called Bipower Variation (BPV ), and a discontinuous one,

the squared price jumps. Disentangling the price jumps is important because, as it has

been noted by Huang and Tauchen (2005), their relative contribution to the total price

variability is about 7%. The BPV is defined as

BPVt =
π

2

M∑

j=2

|rtj ||rtj−1
| t = 1, ..., T (31)

and converges to the integrated variance as M diverges. As M increases, the bipower

variation will converge to integrated continuous volatility, which is likely to be affected

by volatility jumps, as shown, for instance by Caporin et al. (2014). Hence, the following

empirical analysis will be based on the estimation of alternative MEM specifications on the

BPV series. It should be noted that, in finite samples, any volatility estimator, including

the BPV, is contaminated by a measurement bias, but it is assumed that the measurement

error can be considered negligible for the purposes of this paper.

The empirical analysis is based on two data sets. The first one includes the bipower

variation of seven stock indexes: S&P500, FTSE 100, DAX, DJIA, NASDAQ 100, CAC 40,

Bovespa, sampled from January 3, 2000 through January 31, 2013, as made available by

the Oxford-Man Institute’s Realised Library. The second data set employed consists of the

intradaily returns of 16 large cap equities quoted on the New York market: Boeing, Bank

of America, City Group, Caterpillar, Federal Express, Honeywell, Hewlett-Packard, IBM,

JP Morgan, Kraft, Pepsi, Procter & Gamble, AT&T, Time Warner, Texas Instruments,

and Wells Fargo. Prices are sampled at one minute frequency, from January 2, 2003 to

June 30, 2012, and they are provided by TickData. The bipower variation is estimated

from the 1-minute prices. In both datasets, the realized measure is expressed as daily

volatility, i.e. the square root of the bipower variation, RMt =
√
BPVt.

Table A.1 in the Web Appendix reports descriptive statistics of
√
BPVt for the seven

indexes. We observe well-known stylized facts such as high kurtosis and asymmetry, due

to the long upper tail characterizing the empirical density of bipower variation time series,

and the presence of a strong serial correlation as suggested by the very high values of the

auto-correlations at the selected lags 1, 5 and 22.
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Several alternative multiplicative specifications are considered for characterizing the

dynamic behaviour of the square root of the bipower variation of the stock indexes and

individual S&P 500 stocks. We estimate the simple AMEM and the AHAR-MEM in order

to evaluate if there is empirical support for a HAR specification in µt. For what concerns

the multiplicative models with jumps, we consider the following cases:

• Constant jump intensity: from equation (20) we set λt = φ1 and φ2 = φ3 = 0;

• Time-varying jump intensity: with λt evolving as in equation (20).

To compare the alternative models we consider two different approaches. Firstly, we

pursuit a full-sample evaluation approach, where the MEM and MEM-J specifications are

compared with respect to their fit on the empirical data and a series of statistical tests

for restrictions on the parameters are performed. Secondly, we evaluate model abilities

in capturing the behaviour of the upper tail of the realized measure both in-sample and

out-of-sample. This is not only crucial for risk-management purposes, but also consistent

with the expected ability of the MEM-J in explaining sudden increases in the volatility

that cause observations of the realized measures located in the upper tail.

5.2 Full-sample model comparison

The different specifications adopted for the estimation of the BPV dynamic behavior are

first compared in terms of their ability in capturing the dynamics of the series. To this

end, we analyze the dynamic properties of the residuals

e∗t =
RMt

E [RMt|It−1]
. (32)

The residuals obtained from different model specifications might be compared in terms

of density, moments, as well as with respect to the presence of serial correlation in the

first and second order moments.7 Tables from 2 to 5 report the parameter estimates and

the residual statistics. The standardized residuals, ǫ̂t, are obtained by the transformation

ǫ̂∗t = F−1
N [FΓ(ǫ̂t)], for t = 1, . . . , n, where FN () and FΓ() are the cumulative density func-

tions of the standard normal and Gamma distributions, respectively. Since the standard

diagnostic statistics and graphs are designed for residuals that are assumed normal dis-

tributed and since the model disturbances are assumed to come from a Gamma density,

this transformation for the residuals is justified. From Tables 2 and 3, which report esti-

mation results for the Asymmetric MEM and the Asymmetric HAR-MEM respectively, it

7As an alternative, model residuals might be computed by standardization of RMt with respect to its
expected value, involving the impact of µt and (when present) Zt. In this case, innovations are defined
as Pearson’s residuals

ε̂t =
RMt − E [RMt|It−1]

V [RMt|It−1]
1/2

. (33)
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Figure 2: Jump intensity and expected jump component from AHAR-MEM-J-(λt) model for S&P500 and CAC 40.
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ω α β γ ν LogLL Q1 Q10 Q22

SP500 0.0003a 0.3278a 0.5944a 0.0895a 15.9492a 15673 0.004 0.000 0.000
FTSE 100 0.0002a 0.3120a 0.6393a 0.0556a 16.6881a 16104 0.001 0.000 0.000
DAX 0.0003a 0.3247a 0.6112a 0.0703a 17.4627a 15202 0.000 0.000 0.000
DJIA 0.0003a 0.3234a 0.6037a 0.0814a 15.6513a 15742 0.003 0.000 0.000
NSDQ 0.0003a 0.3404a 0.5915a 0.0759a 16.1353a 15199 0.001 0.000 0.000
CAC 0.0002a 0.3051a 0.6327a 0.0782a 17.8968a 15503 0.000 0.000 0.000
BOVESPA 0.0010a 0.3561a 0.5402a 0.0562a 15.1477a 13829 0.007 0.000 0.000

BA 0.0005a 0.3618a 0.5859a 0.0326a 22.4478a 10559 0.0387 0.0003 0.0002
BAC 0.0003a 0.5227a 0.4376a 0.0479a 19.8641a 10198 0.0832 0.0000 0.0005
C 0.0002a 0.5214a 0.4535a 0.0285a 24.6862a 10049 0.0370 0.0000 0.0005
CAT 0.0007a 0.4162a 0.5206a 0.0403a 22.8666a 10340 0.0046 0.0000 0.0020
FDX 0.0005a 0.3995a 0.5435a 0.0355a 21.1708a 10516 0.0227 0.0000 0.0000
HON 0.0008a 0.4063a 0.5172a 0.0506a 23.0828a 10502 0.0516 0.0022 0.0033
HPQ 0.0007a 0.4000a 0.5302a 0.0452a 20.6334a 10335 0.0390 0.0000 0.0004
IBM 0.0005a 0.4420a 0.4968a 0.0371a 25.3562a 11303 0.0968 0.0071 0.0260
JPM 0.0004a 0.4864a 0.4731a 0.0366a 22.4146a 10323 0.0039 0.0000 0.0000
KFT 0.0005a 0.3565a 0.5880a 0.0106a 16.5042a 10845 0.0030 0.0000 0.0003
PEP 0.0003a 0.3389a 0.6153a 0.0310a 22.4093a 11373 0.3856 0.0229 0.0003
PG 0.0004a 0.4130a 0.5288a 0.0279a 23.2476a 11544 0.0953 0.0005 0.0003
T 0.0003a 0.3980a 0.5617a 0.0253a 25.2941a 10981 0.0234 0.0000 0.0001
TWX 0.0005a 0.4032a 0.5499a 0.0287a 28.8549a 10672 0.0698 0.0024 0.0044
TXN 0.0006a 0.3546a 0.5984a 0.0270a 25.2586a 10120 0.0527 0.0018 0.0006
WFC 0.0002a 0.4590a 0.5184a 0.0158 18.9402a 10255 0.4878 0.0000 0.0002

Table 2: Estimates of the baseline AMEM (see (18)). The upper part of the table reports
the results for several stock indexes while the lower part refers to 16 NYSE stocks. a, b
and c stand for significance at 1%, 5% and 10% respectively. Q1, Q10 and Q22 are the
p-values of the Ljung-Box test for absence of autocorrelation in the residuals, where the
latter are computed as ǫ̂t =

RMt

E[RMt|It−1]
.

is evident that the Asymmetric MEM is unable to capture the persistence that is present

in the bipower variation time series. On the contrary, in the case of the Asymmetric HAR-

MEM the Ljung-Box statistics does not reject the null of no residual autocorrelation in

4 out of the 7 stock indexes considered, and only when we focus on lags up to the 22-nd.

Looking at the individual stocks, at the 5% confidence level we have only 4 out of the

16 equities with some evidences of residual serial correlation, and only over 22 lags. The

number of stocks with serial correlation in the residuals of the AHAR-MEM decreases to

1 if we take the 1% confidence level. If we compare the estimated parameters of the stocks

to those of the indexes, we note the following: stocks are characterized by a somewhat

higher impact of previous day bipower variation levels. Differently, last week and last

month average bipower variations, have a more heterogeneous impact, with some cases

of reduced significance. Heterogeneity in the single assets might be expected. Finally,

we observe how the innovation parameter, ν, is sensibly higher than that of the indexes.

This reflects the differences in the density, where the volatility of volatility of the indexes

is higher than that of the individual stocks. This may be due to the different sample
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ω α1 α2 α3 β γ ν LogLL Q1 Q10 Q22 LRα2,α3

SP500 0.0003a 0.3081a 0.1670a 0.0980a 0.3297a 0.1129a 16.2920a 15708 0.9042 0.4782 0.3882 70.29a

FTSE 100 0.0002a 0.3218a 0.2458a 0.1246a 0.2396a 0.0684a 16.9945a 16135 0.9106 0.6457 0.0119 60.46a

DAX 0.0004a 0.3331a 0.1294a 0.1103a 0.3506a 0.0817a 17.7801a 15232 0.2201 0.1974 0.0000 60.40a

DJIA 0.0004a 0.3120a 0.1962a 0.0928a 0.3052a 0.1013a 15.9279a 15771 0.9133 0.4444 0.5854 57.96a

NSDQ 0.0004a 0.3205a 0.1844a 0.1397a 0.2633a 0.1038a 16.6296a 15249 0.7336 0.1068 0.0944 99.88a

CAC 0.0003a 0.3216a 0.1508a 0.0991a 0.3541a 0.0877a 18.1808a 15530 0.3166 0.0889 0.0000 53.05a

B0VESPA 0.0011a 0.3495a 0.1634a 0.1552a 0.2089a 0.0724a 15.5308a 13870 0.7588 0.6229 0.2247 80.81a

BA 0.0006a 0.3840a 0.0735 0.1183a 0.3669a 0.0338a 22.8003a 10578 0.7975 0.7728 0.0449 37.44a

BAC 0.0003a 0.5316a 0.0457 0.1297a 0.2551a 0.0442a 20.3631a 10228 0.7118 0.6958 0.6892 59.75a

C 0.0002a 0.5230a 0.0941c 0.1013a 0.2548a 0.0281a 25.1744a 10072 0.6971 0.7133 0.2519 47.02a

CAT 0.0009a 0.4127a 0.2341a 0.1009a 0.1706b 0.0475a 23.2921a 10362 0.8485 0.6575 0.8894 44.30a

FDX 0.0006a 0.4181a 0.0834c 0.1635a 0.2770a 0.0339a 21.7095a 10546 0.7435 0.1739 0.4699 60.45a

HON 0.0008a 0.4075a 0.1281c 0.0744a 0.3052a 0.0544a 23.3126a 10514 0.7512 0.8410 0.1363 23.80a

HPQ 0.0009a 0.4007a 0.1822a 0.1222a 0.2076a 0.0577a 21.1230a 10363 0.7678 0.4510 0.4235 56.44a

IBM 0.0005a 0.4445a 0.1275b 0.0629a 0.2973a 0.0401a 25.5941a 11314 0.9893 0.9638 0.5213 22.40a

JPM 0.0005a 0.4918a 0.2013a 0.1077a 0.1527b 0.0349a 22.9204a 10349 0.6510 0.8022 0.3092 53.64a

KFT 0.0009a 0.3813a 0.2703a 0.1829a 0.0772 0.0025 16.9128a 10875 0.6344 0.5964 0.9161 59.10a

PEP 0.0004a 0.3507a 0.0655 0.0678b 0.4645a 0.0319a 22.5384a 11380 0.6252 0.3843 0.0052 13.83a

PG 0.0006a 0.4099a 0.2367a 0.0916a 0.1841a 0.0354a 23.6511a 11565 0.4232 0.9140 0.0508 41.37a

T 0.0004a 0.4151a 0.1219b 0.1062a 0.3077a 0.0298a 25.6652a 10999 0.8620 0.6676 0.0327 34.94a

TWX 0.0006a 0.4109a 0.1384b 0.1129a 0.2815a 0.0327a 29.3522a 10692 0.7001 0.9871 0.4933 40.95a

TXN 0.0008a 0.3661a 0.1848b 0.1288a 0.2606a 0.0334a 25.6894a 10140 0.4013 0.8918 0.1558 40.59a

XOM 0.0004a 0.4773a 0.2018a 0.1539a 0.1374 0.0146 19.4596a 10287 0.0834 0.4063 0.3548 65.20a

Table 3: Estimates of the Asymmetric HAR-MEM (see (19)). The upper part of the table reports the results for several stock indexes
while the lower part refers to 16 NYSE stocks. a, b and c stand for significance at 1%, 5% and 10% respectively. Q1, Q10 and Q22 are the
p-values of the Ljung-Box test for absence of autocorrelation in the residuals, where the latter are computed as ǫ̂t =

RMt

E[RMt|It−1]
. LRα2,α3

is the likelihood ratio test for the nullity of α2 and α3.
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Figure 3: Relative expected jump contribution. The figures display the ratio
EJ [RMt|It−1]−E0[RMt|It−1]

E0[RMt|It−1]
, where EJ [RMt|It−1] is the conditional expectation under AHAR-

MEM-J-λt, and E0[RMt|It−1] is the conditional expectation under AHAR-MEM.

periods under exam. Given these results, in the rest of the paper we will consider only

the AHAR specification.

As it emerges from the theoretical analysis in Section 3, the MEM-J specification is

well suited to provide a high degree of flexibility for the conditional moments of RMt. The

comparison of AHAR-MEM and AHAR-MEM-J specifications starts off from the simple

evaluation of parameters significance. In fact, obtaining significant coefficients for the

jump intensity, either in the constant or dynamic specification, might be seen as a first

evidence that jumps in volatility are a significant component of the stock indexes bipower

variation. With regard to this aspect, Tables 3 and 4 allow for a first comparison. By

looking at Table 4, we observe that for all series the parameters associated with the jumps,

ς and λ, are all statistically significant, thus supporting the potential relevance of the jump

component Zt. In addition, the parameters driving the evolution of µt are close to those

of the baseline AHAR-MEM specification in Table 3, with the exception of the innovation

term, whose scale parameter ν is characterized by a sensible increase. As expected, this

confirms that accounting for the presence of a jump component in the bipower variation

affects the estimate of the parameters of the innovation term distribution. Since the

nuisance parameter ς is not defined in the AHAR-MEM, it is not possible to evaluate

the significance of the jump term by a standard LR test, see the discussion in Hansen

(1996).8 However, from a comparison of the values in Tables 3 and 4, it clearly emerges

that the log-likelihood functions of the AHAR-MEM-J are much larger than those of the

AHAR-MEM, as their difference is often larger than 100.

8In this case simulation based approaches can be used to recover likelihood ratio test critical values
following Hansen (1996). We don’t pursue that strategy due to the computational burden implied in the
estimation of the MEM-J.

22



ω α1 α2 α3 β γ ν ς φ1 LogLL Q1 Q10 Q22

SP500 0.0003a 0.3022a 0.1675a 0.1129a 0.3129a 0.1086a 22.1149a 17.9948a 0.1791a 15789 0.7856 0.4161 0.3145
FTSE 100 0.0002a 0.2943a 0.2179a 0.1604a 0.2595a 0.0591a 26.2087a 10.4352a 0.1498a 16313 0.1217 0.6439 0.0016
DAX 0.0003a 0.3037a 0.1427a 0.1317a 0.3508a 0.0738a 25.1605a 13.4345a 0.1643a 15310 0.0040 0.0420 0.0000
DJIA 0.0003a 0.3001a 0.1844a 0.1060a 0.3097a 0.0961a 21.6582a 15.9597a 0.1719a 15852 0.4610 0.3420 0.4822
NSDQ 0.0003a 0.3070a 0.1947a 0.1502a 0.2568a 0.1019a 22.5996a 10.9389a 0.1371a 15323 0.4407 0.1010 0.0563
CAC40 0.0003a 0.2983a 0.1551a 0.1171a 0.3556a 0.0782a 27.2816a 11.6089a 0.1678a 15623 0.0130 0.0475 0.0000
BOVESPA 0.0009a 0.3216a 0.1287b 0.1673a 0.2559a 0.0704a 22.1820a 20.2391a 0.2233b 13946 0.0860 0.2011 0.0660

BA 0.0006a 0.3841a 0.0831 0.1486a 0.3134a 0.0251a 35.5468a 20.2166a 0.1970a 10670 0.6809 0.9054 0.0349
BAC 0.0003a 0.4990a 0.1000c 0.1368a 0.2114a 0.0326a 30.7986a 31.7204a 0.1909a 10406 0.2802 0.8761 0.7291
C 0.0003a 0.4749a 0.1188b 0.1075a 0.2585a 0.0201a 40.2461a 16.9422a 0.1743a 10176 0.0187 0.0695 0.0834
CAT 0.0008a 0.4080a 0.2081a 0.1387a 0.1603a 0.0417a 32.8795a 25.9484a 0.1751a 10445 0.6661 0.5964 0.7196
FDX 0.0005a 0.3871a 0.1284a 0.2018a 0.2180a 0.0349a 31.7331a 33.7029a 0.2088a 10648 0.8995 0.2012 0.3635
HON 0.0007a 0.3840a 0.0838 0.1116a 0.3364a 0.0498a 31.9527a 29.6532a 0.1734a 10590 0.1232 0.4163 0.0273
HPQ 0.0008a 0.4055a 0.1367a 0.1519a 0.2146a 0.0432a 33.4704a 17.5766a 0.1750a 10506 0.9266 0.6977 0.3116
IBM 0.0006a 0.4173a 0.1476b 0.0866a 0.2700a 0.0314a 35.7822a 20.8649a 0.1508a 11385 0.2993 0.7714 0.3067
JPM 0.0005a 0.4543a 0.1842a 0.1355a 0.1648a 0.0320a 31.7622a 34.5964a 0.1889a 10434 0.0524 0.2157 0.1139
KFT 0.0011 0.3201a 0.2528a 0.2212a 0.0697a 0.0002 28.5538a 35.8665a 0.2717a 11061 0.1221 0.3387 0.6590
PEP 0.0004a 0.3140a 0.0953 0.1163a 0.4086a 0.0293a 33.3037a 27.9358a 0.1862a 11503 0.5895 0.3141 0.0028
PG 0.0006a 0.3817a 0.2081a 0.1253a 0.1891a 0.0319a 36.3629a 16.8767a 0.1639a 11677 0.6694 0.8454 0.0130
T 0.0005a 0.3915a 0.1344a 0.1321a 0.2758a 0.0255a 36.8422a 21.6597a 0.1536a 11094 0.5551 0.6199 0.0105
TWX 0.0006a 0.3923a 0.1262b 0.1486a 0.2651a 0.0280a 44.0405a 27.6775a 0.1605a 10827 0.6941 0.8620 0.3519
TXN 0.0009a 0.3758a 0.1710b 0.1384a 0.2450a 0.0291a 32.8834a 27.8139a 0.1362a 10194 0.2234 0.7120 0.1184
WFC 0.0004a 0.4490a 0.1759b 0.1586a 0.1598c 0.0178b 33.9598a 20.8867a 0.2171a 10485 0.3035 0.7847 0.5023

Table 4: Estimates of the Asymmetric HAR-MEM-J. The upper part of the table reports the results for several stock indexes while the lower
part refers to 16 NYSE stocks. a, b and c stand for significance at 1%, 5% and 10% respectively. Q1, Q10 and Q22 are the p-values of the
Ljung-Box test for absence of autocorrelation in the residuals, where the latter are computed as ǫ̂t =

RMt

E[RMt|It−1]
.
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ω α1 α2 α3 β γ ν ς φ1

1−φ2

φ2 φ3 LogLL Q1 Q10 Q22 LRφ2,φ3

SP500 0.0003a 0.2913a 0.1694a 0.1182a 0.3162a 0.1061a 22.9479a 13.9452a 0.1757a 0.9408a 0.1930a 15808 0.3521 0.2656 0.2197 38.14
FTSE 100 0.0002a 0.2748a 0.2189a 0.1648a 0.2705a 0.0564a 26.5095a 9.7599a 0.1477a 0.6411c 0.3950b 16335 0.0099 0.2004 0.0003 45.66
DAX 0.0002a 0.2886a 0.1415b 0.1356a 0.3653a 0.0699a 26.2173a 12.1181a 0.1760a 0.9193a 0.2146a 15330 0.0007 0.0021 0.0000 40.44
DJIA 0.0003a 0.2868a 0.1688a 0.1127a 0.3307a 0.0946a 22.4206a 12.9378a 0.1761a 0.9489a 0.2248a 15875 0.1050 0.1101 0.2587 47.00
NSDQ 0.0003a 0.3003a 0.1888a 0.1587a 0.2597a 0.0973a 23.6406a 10.2317a 0.1585a 0.9634a 0.1665a 15342 0.1816 0.0700 0.0283 38.09
CAC 0.0002a 0.2774a 0.1365b 0.1152a 0.3978a 0.0770a 27.5657a 10.8710a 0.1630a 0.9012a 0.2313a 15652 0.0001 0.0015 0.0000 56.81
BOVESPA 0.0009a 0.3127a 0.1226b 0.1705a 0.2687a 0.0700a 22.6130a 17.4224a 0.2147a 0.3461a 0.3455a 13960 0.0232 0.0766 0.0298 27.41

BA 0.0006a 0.3664a 0.0893 0.1424a 0.3322a 0.0245a 35.8425a 19.0657a 0.1904a 0.8863a 0.1048b 10683 0.7242 0.9225 0.0431 26.30
BAC 0.0004a 0.4785a 0.0937c 0.1371a 0.2334a 0.0346a 33.6804a 19.4741a 0.1945a 0.9814a 0.0986a 10427 0.0762 0.6096 0.5985 40.52
C 0.0003a 0.4483a 0.1164b 0.1069a 0.2876a 0.0218a 41.6322a 13.6892a 0.1541a 0.9911a 0.1105a 10230 0.0004 0.0028 0.0112 106.29
CAT 0.0008a 0.3901a 0.2122a 0.1395a 0.1718a 0.0419a 33.8332a 21.4409a 0.1696a 0.5204 0.2761b 10457 0.2384 0.4199 0.6357 23.97
FDX 0.0005a 0.3742a 0.1433a 0.1946a 0.2224a 0.0348a 33.6948a 22.4715a 0.2008a 0.8536a 0.1597a 10660 0.5496 0.1314 0.3446 25.09
HON 0.0007a 0.3665a 0.0947 0.1054a 0.3505a 0.0493a 33.8111a 19.3674a 0.1631a 0.9065a 0.2174a 10614 0.0257 0.2464 0.0204 48.14
HPQ 0.0008a 0.3892a 0.1621a 0.1445a 0.2137a 0.0437a 33.9732a 17.4021a 0.1697a 0.8364a 0.1549a 10537 0.7540 0.6728 0.3541 63.04
IBM 0.0006a 0.3947a 0.1263c 0.0791a 0.3220a 0.0298a 36.6859a 17.7869a 0.1490a 0.9819a 0.1292c 11416 0.0218 0.2105 0.1295 62.64
JPM 0.0005a 0.4541a 0.1832a 0.1361a 0.1824a 0.0322a 33.1899a 26.7587a 0.1918a 0.9878a 0.0548 10450 0.0524 0.2157 0.1139 31.39
KFT 0.0011b 0.3065a 0.2625a 0.2090a 0.0846 0.0012 30.0529a 27.2279a 0.2694a 0.9673a 0.0791a 11079 0.0457 0.2383 0.6070 35.68
PEP 0.0003a 0.2846a 0.0275 0.0765 0.5545a 0.0341a 34.5631a 21.7868a 0.1710a 0.8060a 0.2754a 11535 0.0208 0.0455 0.0007 64.31
PG 0.0007a 0.3705a 0.2044a 0.1263a 0.1975a 0.0298a 36.6526a 15.1394a 0.1541a 0.9483a 0.1342a 11696 0.3166 0.5629 0.0057 37.96
T 0.0005a 0.3682a 0.1356a 0.1256a 0.3060a 0.0246a 37.1412a 16.5691a 0.1539a 0.9723a 0.1493a 11126 0.0960 0.2222 0.0051 63.91
TWX 0.0006a 0.3757a 0.1253c 0.1431a 0.2888a 0.0261a 45.4493a 23.1275a 0.1539a 0.7662a 0.2464a 10846 0.2432 0.6658 0.3053 37.17
TXN 0.0009a 0.3625a 0.1785b 0.1390a 0.2463a 0.0296a 34.3740a 19.1028a 0.1306a 0.9704a 0.1152a 10208 0.4644 0.8732 0.1554 26.78
WFC 0.0004a 0.4281a 0.1665b 0.1531a 0.1926a 0.0201b 35.7612a 16.2251a 0.2086a 0.9266a 0.1493a 10505 0.7835 0.9313 0.5639 40.06

Table 5: Estimates of the Asymmetric HAR-MEM-J with time-varying λ, see (20). The upper part of the table reports the results for several
stock indexes while the lower part refers to 16 NYSE stocks. a, b and c stand for significance at 1%, 5% and 10% respectively. Q1, Q10 and Q22

are the p-values of the Ljung-Box test for absence of autocorrelation in the residuals, where the latter are computed as ǫ̂t =
RMt

E[RMt|It−1]
. LRφ2,φ3

is the likelihood ratio test for the nullity of φ2 and φ3.
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Figure 4: Volatility-of-volatility ratio. The figures display the ratio VJ [RMt|It−1]
V0[RMt|It−1]

, where

VJ [RMt|It−1] is the conditional variance under AHAR-MEM-J-(λt), and V0[RMt|It−1] is
the conditional variance under AHAR-MEM.

When the jump intensity parameter is assumed to be time-varying, see Table 5, we

observe changes in parameters associated with the innovation term εt and with the jump

component Zt, while the parameters in µt are not much affected. The estimates of ν

and ς are generally higher for the individual stocks than those of the indexes. The

estimated unconditional mean of λt is between 0.15 and 0.20 for most stocks, and there are

not relevant differences between stock indexes and individual stocks. Interestingly, most

markets and stocks, among those considered, display estimates of φ2 larger than 0.9. Two

notable exceptions are FTSE-100, CAT and BOVESPA. For the latter, the sensitivity

to the news arrival, measured by the parameter φ3 is close to persistence parameter, i.e.

φ2, this might suggest that the time-varying jump intensity specification is not needed.

However, the LR test for the joint nullity of φ2 and φ3 takes very large values. Even

though in this case we don’t have any asymptotic theory for the LR test, we believe

that the observed values of the test statistic can reasonably lead to the rejection of the

null hypothesis in all cases considered. Introducing dynamics in the jump intensity is

therefore important to provide the necessary degree of flexibility in the characterization

of the conditional moments of RMt.

Figure 2 reports two examples of the fitted time-varying jump intensity, λt, and of the

expected jump component E [Zt|It−1]. Both the jump intensity and the expected jump

(which is a non-linear function of the jump intensity) increase during the recent crises:

the end of technology market bubble in 2001-2002, the subprime crisis in 2007-2008 and

the European sovereign crisis in 2010. Notably, the most recent crisis seem to be more

relevant in France compared to the others, a somewhat expected result. Figure 3 plots

the impact of a change in the model structure, moving from an AHAR-MEM without
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