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Abstract

The realized volatility of financial returns is characterized by persistence and oc-
currence of unpredictable large increments. To capture those features, we introduce
the Multiplicative Error Model with jumps (MEM-J). When a jump component
is included in the multiplicative specification, the conditional density of the real-
ized measure is shown to be a countably infinite mixture of Gamma and K dis-
tributions. Strict stationarity conditions are derived. A Monte Carlo simulation
experiment shows that maximum likelihood estimates of the model parameters are
reliable even when jumps are rare events. We estimate alternative specifications of
the model using a set of daily bipower measures for 7 stock indexes and 16 individual
NYSE stocks. The estimates of the jump component confirm that the probability
of jumps dramatically increases during the financial crises. Compared to other real-
ized volatility models, the introduction of the jump component provides a sensible
improvement in the fit, as well as for in-sample and out-of-sample volatility tail
forecasts.
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1 Introduction

A great deal of the recent literature on volatility modeling exploits realized volatility
measures as ex-post estimates of the return variation over a given horizon. The recent
financial crisis has been an important test for existing volatility models. In general, models
of realized measures are unable to fit the abnormal levels reached by the volatility during
the financial turmoil. This seems to call for a more realistic econometric specification of
such models. The inclusion of jumps in the volatility process is a step forward a more
appropriate description of the volatility dynamics. Recently, the analysis of jumps in
prices and volatility, and their interactions, in a continuous-time framework has shown
the importance of both components in fitting the observed dynamics of prices, see e.g.
Chernov et al. (2003), Duffie et al. (2000), Pan (2002), Eraker (2004), Eraker et al. (2003),
Jones (2003), Broadie et al. (2007), Todorov and Tauchen (2011), Andersen et al. (2012),
Bandi and Reno (2012, 2013).

In a discrete-time setting, the analysis has focused on the role that jumps in prices
have in predicting the future volatility. Andersen et al. (2007) extend the HAR-RV model
to include past price jumps, i.e. the HAR-RV-J model. Instead Caporin et al. (2014)
explicitly model the volatility jumps in a HAR setup. This allows a direct estimation of
volatility jumps which is used to analyze the economic determinants. One of the results
of their analysis is that volatility jumps increase significantly the fit of the model in the
right tail. It emerges that it is important to allow for the presence of jumps because
this component can contribute to explain the level of the daily volatility during periods
of market turmoils. One limitation of the HAR models in the log-transformed volatility
series is that to obtain the forecasts distribution of the levels can be problematic.

We propose the Asymmetric HAR-MEM-J (AHAR-MEM-J) which is an extension of
the multiplicative error model (MEM) by Engle (2002) and Engle and Gallo (2006). We
extend the MEM approach to the modeling of the realized measures by including a latent
process, labeled jump, that causes infrequent large moves in the volatility. The AHAR-
MEM-J is a three-factor model: first, a long-run factor, modeled by the Asymmetric
HAR, which replicates the long-run dependence present in volatility; second, a short-run
factor, which represents the transitory component of the volatility process; and third,
the jump factor, which is responsible for the presence of realizations in the right tail of
volatility distribution. For an analogous interpretation, see Ghysels et al. (2004). Thanks
to the availability of realized volatility measures which sterilize the effect of price jumps
on volatility, we can easily focus on time series that include only volatility jumps, if they
are present. Modeling the volatility by including a jump process increases the model’s
capability of capturing extreme movements, or tail events. Potential sources of jump
innovations to volatility can be important news, data releases, or unexpected events, which

might induce market participants to suddenly revise their portfolios, thus producing large
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variations in the volatility level. During the financial crises of 2008 the volatilities of stock
markets across the world have experienced such abnormal movements.

Our approach is similar to that of Bauwens and Veredas (2004). We specify the
volatility process as a combination of a continuous volatility component and a discrete
compound Poisson process for the jumps; the two elements determine the level of the
volatility in a multiplicative framework. It follows that the conditional density of the
realized measure is a countably infinite mixture of two random variables: one distributed
as a Gamma, and the second, when the number of jumps is strictly larger than zero, is
distributed as a Kappa, henceforth K. The K is a product distribution, known in physics
and radar applications, but never used in econometrics, to the best of our knowledge. The
K is obtained as the product of two Gamma-distributed random variables. Exploiting
the knowledge of the mixture density that characterizes the conditional distribution of
the observed volatility measure, it is possible to obtain in closed form the conditional
moments, the likelihood function and the quantiles. In order to account for the empirical
evidence of jump clustering, the intensity parameter, governing the jump occurrence in
the compound Poisson process, is specified in a time varying form, according to an au-
toregressive specification, in the spirit of Hansen (1994) and Maheu and McCurdy (2004).
For what concerns the continuous volatility component, we have adopted an Asymmetric
Heterogeneous Autoregressive (AHAR) specification. A common finding in the empiri-
cal literature that employs MEMs in volatility modeling is indeed that the estimates of
GARCH-type specifications of the conditional mean turn out to be close to be integrated.
Such an evidence highlights the necessity of having a mean model specification that takes
into account the persistence observed in the realized measure series. Our empirical results
confirm this finding. Indeed, the HAR specification sensibly improves the fit compared
to simpler, and less persistent, specifications of the continuous volatility component. The
model parameters can be estimated by maximum likelihood methods. However, given the
mixture structure, different local maxima may exist, see Frithwirth-Schnatter (2006). For
our model, a Monte Carlo simulation experiment shows the appropriateness of the finite-
sample features of maximum likelihood estimation. In addition, the maximum likelihood
estimates of the jump component seem to be reliable, even when jumps are rare events.

The empirical application is based on daily bipower volatility series of individual stocks
and equity indexes. The estimation results highlight a positive probability of jumps in
volatility, which is consistent with the findings of previous studies on the topic. The
AHAR-MEM-J with time-varying jump intensity allows for a greater flexibility in ac-
commodating extremely large volatilty realizations, dramatically improving the fit of the
baseline MEM. By analogy to the Value-at-Risk (VaR), we introduce the Volatility-at-
Risk (VolaR) which constitutes a natural measure of risk when designing volatility trading
strategy. The evaluation of the VolaR estimation provided by alternative specifications is

in favour of the MEM-J against models without jumps.



In summary, the contributions of the paper are at least three. Firstly, we generalize
the baseline MEM of Engle and Gallo (2006) by including a jump term, which captures
the occasional boosts of volatility, and a pseudo long-memory component which is able
to account for the observed persistence. Secondly, the conditional density of the model’s
dependent variable is derived as well as the log-likelihood function. Finally, we provide
evidence that the jumps are a relevant component of the realized measure series, thhus
supporting the claim that ignoring them might lead to an under-estimation of the VolaR.
This under-coverage of the right tail of the volatility density leads to an underestimation
of the volatility risk especially in periods of markets turmoils, with consequences for the
pricing of derivatives and volatility trading strategies.

The paper is organized as follows. Section 2 sets the notation of the baseline MEM.
Section 3 describes the MEM-J and the finite mixture distribution that characterizes the
conditional density of the model’s dependent variable. Conditional moments are also pre-
sented. Section 4 discusses both model extensions with HAR dynamics and time-varying
parameters, and the model’s properties, such as conditions for covariance stationarity and
maximum likelihood estimation. Section 5 illustrates the empirical results. In particular,
Subsection 5.1 describes the dataset and the construction of the volatility series, while
the subsection 5.2 provides a discussion of the empirical results obtained with stocks in-
dexes and individual S&P 500 stocks under different model specifications; in subsection
5.3 results with alternative MEM specifications are presented. In Section 6 the results
of the VolaR analysis are reported and discussed. Finally, Section 7 concludes. Proofs,
selected derivations of relevant quantities and additional theoretical details are included
in Appendix A. A Web Appendix also contains some additional results and details on the
K distribution.

2 The baseline MEM

In this section we briefly present the MEM, in its simplest form, as introduced by Engle
and Gallo (2006). Let RM,; be the daily realized volatility measure.! We assume that
RM, follows a general MEM, i.e.

RM; = puey (1)

with
e =w+ o' Xy 1+ Bru—1

"'We assume that the realized volatility measure used in the empirical analysis is corrected for mi-
crostructure noise and filtered from price jumps. The estimator adopted in the present paper is briefly
described in Section 5.1.



and where X;_; is a vector that contains variables included in the information set at time

t — 1. Moreover, the innovation &, is a random variable with scale-shape Gamma density?
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where % is the scale and v is the shape of the Gamma density, both driven by the common
parameter v. In this case, we have E;_; [¢,] = 1 and V,_; [¢,] = . By the properties of the
Gamma distribution (in particular the product of a Gamma-variate by a scalar assuming

it is known or included in the information set) we have

1 RMv\" 1 _RrMp
RM|I, 1) = Kt RM; > 0.
FRMIE) = g () e a2

If the realized measure follows a MEM, the conditional mean and variance are given as
E[RM|I; ] = py = w + &' Xy + B, (4)

and
VI[RM|I ] = piv". (5)

The form of pu, is sufficiently flexible to include simple auto-regressive patterns, HAR
terms, asymmetry, or predetermined variables. Examples of possible specifications for
e are given, among others, in Engle and Gallo (2006) and Brownlees et al. (2012). In-
terestingly, the term g, induces the conditional variance of the realized measure to be
time-varying, thus making the MEM consistent with the so-called volatility-of-volatility
feature, studied in Corsi et al. (2008) among others. The literature on multiplicative
models of volatility includes several extensions of the baseline MEM. For example, Gallo
and Otranto (2012) extend the MEM to include time-varying parameters as in the case
of regime-switching MEM. The latter specification allows for changing parameters but
requires to impose a priori structures on the form of the transition and on the number of
underlying regimes. Alternatively, Haerdle et al. (2012) propose to adaptively estimate
the MEM based on a window of varying length and thus providing updated parameter

estimates at each point in time.

2See the Web Appendix for some further details on Gamma, and related, random variables.



3 A Multiplicative Error Model with Jumps

The baseline MEM with a Gamma distributed error term is poorly designated to account
for the presence of large and abrupt movements, i.e. the jumps, that characterize the
volatility dynamics. The presence and the effects of volatility jumps have been already
documented in the literature either in a continuous time framework, or, in discrete time,
see Caporin et al. (2014), among others. Excluding volatility jumps reduces the fit of
the model to real data, thus resulting in a worsening of the forecasting performance. We
therefore propose a generalization of the MEM of Engle and Gallo (2006), which we call
MEM-J. The new model introduces, in a multiplicative way, an additional volatility jump
term to the standard MEM of Engle and Gallo (2006). The dynamic of the MEM is also
generalized by the inclusion of HAR terms following Corsi (2009), we defer the discussion
of this to Section 4. Under the MEM-J specification, the realized volatility measure RM,

is decomposed into the product of three elements
RMt = MtZtgt (6)

where g, is a function measurable with respect to the information set at time ¢ — 1,
Zy; is the volatility jump component, and the innovation ¢; is a scale-shape Gamma,
ee|ly—y ~ T (%, 1/). Hereafter, to simplify the interpretation of the model outcome, the
Gamma density of the innovation term is expressed in the mean-shape representation, i.e.
e¢|l;—1 ~ I'(1,v), which is, by construction, equivalent to the scale-shape representation.
Hence, a number of assumptions on Z; and ¢; are required in order to identify and separate

the two sources of shocks. The jump term, Z;, is defined as

]_ Nt - O
Zt - N (7)
Yim Y Nie>0

where /V; is a non-negative integer-valued random variable that represents the number of
jumps occurring at time t. When N, = 0, i.e. jumps are absent, the MEM-J reduces to
the MEM. The random variable determining the occurrence and the number of jumps,
Ny, is modeled as a Poisson with intensity A,

e\
m!

P(Nt :m‘[t,l) = m:O,172,... (8)
The second characterizing element of Z; defines the size of the jumps. This is determined
by the sum of independent Gamma random variables, Y;; ~ I' (1, <) (in mean-shape form).
Note that the jump density is not dependent on time and the parameter characterizing

the jump evolution is assumed to be time-invariant.

Assumption 1 In the MEM-J



i. & 1s an i.i.d. process defined on positive support with Ele,] = 1.

it. €, Ny and the variables Y, j =1,2,..., Ny, are assumed to be independent for

any t.

By the properties of the Gamma density,?® it follows that, if N, = m > 0,
/Ny =m > 0,11 ~ T (m,mg) 9)

in mean-shape representation. It is interesting to note that the jump component has mean
and variance which depend on the number of jumps, i.e. E[Z;|Ny =m > 0,; 1] = m and
VI[Z Ny =m > 0,1, = =. So far, all parameters are assumed to be time invariant. In
Section 4 we discuss the introduction of time varying parameters. Additional flexibility
in the model parameters can potentially capture the increase in the jumps contribution
to the overall variability of the volatility during market turmoils.

It follows from equation (6) that the MEM-J can be written as

RM; = ey <10)

where the innovation term 1, = Z;¢, is the product of two sources of shocks, one depending
on jumps. In the next paragraphs we will study the properties of the conditional density
of n; and of RM; which clearly depend on the distributional assumptions made on Z; and

E¢.

3.1 The conditional density of 7,

The density of 7, depends on the realization of N;. When N, = 0, we have that | N, =
0, I;_1 is simply equal to &;|;_1, since Z, = 1. In this case, the conditional density of 7,

in mean-shape form, coincides with that of ¢, i.e.
NelNe = 0, Iy = ¢l ~ T (1,v). (11)

Differently, when N; = m > 0 the conditional density of 7, given Z; is Gamma in mean-

shape form
77t|Zt,Nt:m > Oalt—l NP(Zt,I/). (]_2)

In order to derive the conditional density of n; given N; and I; 1, a fundamental element

for the construction of the model likelihood, we have to evaluate the following integral:

/ f(nt‘Nt =m > O, Zt7 [t71>f<zt‘Nt =m > O,[t,1>dz, (13)
0

3See the discussion in the Web Appendix.



where both conditional densities in the integral are Gamma expressed in mean-shape

form. We thus introduce the following proposition (proof in Appendix A).

Proposition 1 Under Assumption 1, consider n, = Zie, where Z; defined in (7) has the
conditional density in (9) and e, ~ ' (1,v). Assuming that Z; and &, are independent at

all leads and lags, it follows that

mes+v

2
Ju|Ny=m >0,1,_,) = —(ThGV) 2

M

WKMW (QW) , (14)

where K, (+) is the modified Bessel function of the second kind. Thus the innovation term
n, conditional on Ny =m > 0 and I;_1, has a K distribution, see Redding (1999), denoted
as

mINe=m > 0,11 ~ K(m,mg,v).

The first two moments of n;, conditional on Ny =m >0 and I;_y, are

E [nt|Nt =m > O, [tfl] = m

1 1 1 1
V[ |Ne=m>0,1.1] = mzw =m’ <—+—+—>.
mgr 14 mg mvg

The K density is governed by three parameters which have specific meanings in our case.
The first parameter is the mean of the K density, and it is equal to the number of jumps,
m. The second parameter depends on the shape of the jump component Z;, while the
third also depends on the shape parameter of the innovation term &,. Additional details
on the K distribution are presented in the Web Appendix. Interestingly, the conditional
variance of 7, is an increasing function of the number of jumps arrivals, m. Hence, periods
with a larger number of jumps arrivals are characterized by a higher volatility-of-volatility.

The innovation term conditional on the information set, I;_;, might be seen as char-

acterized by a countably infinite mixture

FOulliz) = P (N, = 0[L-)T (1,v) + > P(Ny = m|l,1) x K (m,ms,v),  (15)
m=1
where
P(N, =0|I,_1) = e

The mixing variable is the Poisson process N;, which depends on the parameter \. As A

increases, more weight is given to the K distribution, while when A\ = 0 the density of 7,
is ' (1, v) and the MEM-J reduces to the MEM.



3.2 The conditional density of RM,

The conditional density of the realized measure, given N; = m > 0 and [;_1, follows from
the distribution of the term 7, in equation (14). The following proposition reports the

density and the subsequent corollary introduces the conditional moments of RM;.

Proposition 2 Consider model (10) where n, = Ze, with Z; defined in equation (7) and
gy ~ I'(1,v). Assuming that Z; and e, are independent at all leads and lags, it follows
that

2 (RMt mete 1 RM,

RM,|N, =m > 0,1, 1:0) = ) L S
SURMENe =m0 > 0. 4i320) = 2y (7,7 ) Py s ( i

v |,

(16)
where 6 is the wvector of parameters. Thus the realized measure RM;, conditional on
Ny =m >0 and I;,_1, has a K distribution, denoted as

RMy Ny =m > 0,14 ~ K(m,ut,mg, 1/).

The first two moments of RM;, conditional on Ny =m > 0 and I, 1, are

E [RMt|Nt =m > 0, -[t—l] = TN,
1
VIRM|N = m > 0,1, 4] = @m?2e v

mgQr

As a result, both the conditional mean and the variance of the RM sequence are not
only time-varying and driven by p; as in the baseline MEM, but also dependent on the
realized number of jumps, m. On the other hand, when jumps are absent, i.e. m = 0, the
conditional density f(RM;|N; = 0,1;_1;0) is that of the baseline MEM. Integrating out
the realized number of jumps, the density of RM; conditional on the information set 1;

is a countably infinite mixture

F(RMy|I,—y;0) = P (N, = 0| L) T (e, v) + Y P (Ny = m|ly) x K (mpy, ms,v). (17)
m=1

The conditional distribution of RM; depends both on the element p; as well as on the

jump intensity, A\. The expected value of Z; can then be used to derive the expected value

of the realized measure RM,;.* Integrating out the dependence on NV, it is possible to

obtain the expected value and the variance of RM; with respect to the information set

I;_1 only, see Section 4.2.

4See Appendix A.3 for details on the derivation of the moments of Z;.



4 A persistent MEM-J with time-varying parameters

The main stylized fact that emerges from the empirical analysis of the financial returns is
that their volatility is characterized by several dynamic and distributional features. High
persistence, leverage effects, clusters of jumps and heteroskedastic effects in volatility are
indeed relevant characteristic that must be addressed by a proper model. In this section,

we show how the MEM-J presented in Section 3 can account for all these features.

4.1 Specification of y;

The role played by the specification of y; becomes clear when looking at the dynamics
of the model’s residuals. As volatility is an highly persistent series characterized by a
slow and hyperbolic decay of the autocorrelation function, it becomes clear that a simple
ARMA(1,1) specification, as implied by the baseline MEM, is not suited to describe such
a rich dynamic behaviour. As a consequence, the model’s residuals display significant
autocorrelation. A successful and simple approach to capture the (pseudo) long-memory
property of the volatility series has been proposed by Corsi (2009) with the HAR model.
The HAR is long autoregressive model, subject to linear constraints, designed to capture
the persistence of the logarithm of realized volatility. We therefore consider two alternative

specifications for pu:

o Asymmetric MEM:
pe = w + aRM_y + By +vRM,_, (18)

where RM, = RM, - I{r; < 0}. This base specification takes the presence of
asymmetric responses of volatility to the sign of the returns (see Engle and Gallo,
2006), and the coefficient 7 captures a stronger response to negative returns, the well

known leverage effect. The baseline MEM can be simply obtained setting v = 0.

e Asymmetric HAR-MEM (AHAR-MEM), which combines the distinctive elements
of the Asymmetric MEM and the HAR

pe =w + By + oy RM;_y + ap RM;_ 1.5 + asRM;y 1491 + yRM,_, (19)

where RM;_1.,_5 = %2321 RM;_j and RM,; 1491 = % 231:1 RM,_;. The restric-
tion ap = a3 = 0 gives the Asymmetric MEM. Hence, it is possible to test whether
the inclusion of the weekly and monthly volatility terms provide a significant im-

provement in modeling the volatility dynamics.
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4.2 Time-varying jump intensity

The previous specification of the MEM-J is inherently limited given that the Poisson pro-
cess governing the occurrence of jumps and the Gamma density characterizing the jump
size are all driven by time invariant parameters. To increase the model flexibility we intro-
duce time variation in the parameter of the Poisson process. Instead, we maintain a time
invariant jump size since preliminary evaluations of the proposed model show that letting
the parameter to vary across time does not improve upon time-invariant specifications,
but it increases the computational burden associated with the model estimation. Never-
theless, if needed (and supported by the data), even the jump size can be time-varying.
We first specify the dynamic evolution of the parameter ), i.e. the jump intensity, for
which we suggest the Auto Regressive Jump Intensity (ARJI) specification of Chan and
Maheu (2002). The innovation in the jump intensity dynamic are derived from the jump

probability as follows:

At = Q1+ Gali—1 + P36 (20)
where .
&=E[NJ|L] =\ =Y mP (N, =ml|L,) - \. (21)
m=0

The restrictions ¢; > 0 and ¢ > ¢3 > 0 are sufficient to guarantee the positiveness of A,
as in Chan and Maheu (2002). Note that the innovation term depends on the conditional
probabilities of observing m jumps given the information set at time ¢, and those are
determined following the hypothesis of having a Poisson process governing the jumps
number, see (8). However, as the conditioning set is different, those probabilities must
be appropriately evaluated. We will discuss this issue in Section 4.4 when dealing with
the model estimation. From a distributional point of view, letting the mixing parameter
A to be dynamic implies that the conditional density of RM; in (16) has a time-varying
weight associated with the K density. This provides an extremely flexible specification of
the density of RM,, which can be exploited to infer a precise probability of occurrence of

tail events, see Section 6.°

Proposition 3 Consider model (10) where 1y = Ziey with Z; defined in equation (7) and
e, ~ I'(1,v). Assuming that Z, and e, are independent at all leads and lags, it follows

that the first two moments of RM; and n; conditional on I;_, are
E [1|I—1] = (67)% + )\t) ) (22)

E[RM;|I1] = pe (e +N), (23)

Creal et al. (2013) derives the Generalized Autoregressive Score (GAS) representation for both the
time-varying intensity Poisson process and the dynamic mixtures of models. We believe that an extension
of the MEM-J model within the GAS framework is a natural advancement but this is left to future
investigation.

11



V|l = {% + )\f} T+ Y+ (e +N\) [1 T )\t} (24)

V[RM| I, 1] = pii { {% e M NAA)| (T4+vh) = (e + )\t)Q} . (25)

The conditional expected value and variance of RM; depend on the time-varying mean
component as well as on the time-varying jump intensity. We stress that the conditional
variance of RM; is time-varying thanks to the evolution in time of both p; and \;, thus
allowing the MEM-J, similarly to the MEM, to capture the volatility-of-volatility effect
studied in Corsi et al. (2008) among others. The above results highlight how the condi-
tional moments of RM; depend on the marginal moments of the jump term. In fact, the
availability of the first and second moments of the jump component potentially allows
for the construction of confidence intervals around the impact of the expected jump. For
example, compared to the baseline MEM, the conditional expectation of RM,; is inflated
by a time-varying factor (e‘At + )\t), which is never smaller than one by construction and
acts as a state-dependent boosting factor, whose introduction is expected to find strong

support in the data.

4.3 Stationarity

We first provide the stationarity conditions for the simple case of time-invariant jump

intensity with p, specified as
q P
Hi = W + Z OziRMt_i + Z Biﬂt—z* (26)
i=1 i=1

Given the multiplicative structure of the MEM-J, the conditions for strictly stationarity

of RM; can be studied writing (26) in vector form (Markov representation):
Zt = bt + Atzt,l. (27)

Theorem 1 For the MEM-J process in (6) with Assumption 1 where 1y is a sequence
1.9.d. random variables with intensity parameter X\, there exist a unique strictly stationary

solution (which is also weakly stationary) if

€+ 0D a+> Bi<l (28)
j=1 i=1

Proof in Appendix A.5.

We also remark that if the MEM-J has a second-order stationary solution and if w > 0
then condition (28) holds. We note that the introduction of the jump term in the MEM-J
is expressed in a different form with respect to the baseline MEM of Engle and Gallo

12



(2006). We have a multiplicative term, depending on A, that impacts only on the ARCH-
related coefficients, those capturing the impact of innovations on the mean-evolution.
This is a consequence of the fact that the jump term, Z;, is a constituent of the model
innovations, 7;, and it is not persistent by construction. Interestingly, the larger the
coefficient A, the larger is the inflating factor, and the smaller is the stationarity region
given the parameters «; and [;.

We now move to the mode complex case of the time-varying jump intensity. In that
case, we provide a sufficient condition for the stationarity of the MEM-J. Consider the
MEM-J process in (6) with density, conditional to 7, defined in (16), where 7, is a
sequence of random variables with time-varying intensity parameter ), defined as in (20),

and At = A@Et

Theorem 2 Given the MEM-J in (6) with Assumption 1 and the processes for A\, and
e specified as in (20) and (26), respectively, a sufficient condition for the existence of a

strictly stationary solution is

p(A) < exp(—Eflog[(p+q)(n: + (p+¢q) — D))

where p(A) is the spectral radius of A (i.e. the greatest modulus of its eigenvalues).

This second result is less intuitive than in the constant intensity case. Nevertheless,
we stress the sufficient condition depends both on the number of dynamic parameters
affecting 1, and on the expectation of the innovation 7, that combined the jump term and

the error term e;.

4.4 Maximum likelihood estimation

The AHAR-MEM-J can be estimated by maximum likelihood. Under the maintained
assumption that N;|I;_y ~ Poisson()\;) with N; and &, independent processes, the con-
ditional density of RM;, f(RM;|l;_1), can be computed in closed form as in equa-
tion (17). Model parameters are estimated by maximizing the sample log-likelihood
00) = 327 log f (RM,|I,_1;0), where f(RM,|I, ;) is defined in equation (17) and 8 €
© is the vector of parameters for the AHAR-MEM-J with time-varying A, ie. 6 =
[w, B, a1, o, a3, V1, Y2, V35 D1, D2, @3, 6, ¥ . The log-likelihood function £(#) is the log-trasform
of a mixture density. In general, the mixture likelihood function can be unbounded, that
is the function is characterized by the presence of singularities. Thus the ML estimator
as global maximizer of the mixture likelihood function does not exist. Nevertheless, sta-

tistical theory outlined in Kiefer (1978) guarantees that a particular local maximizer of

5The conditional density of RM; involves an infinite sum of densities that depends on the number
of jumps. Therefore, a truncation on the maximum number of jumps m < oo is required in practical
applications. See Section 4.5 for a discussion of the choice of m.

13



the mixture likelihood function is consistent, efficient, and asymptotically normal if the
mixture is not overfitting. Several local maximizers may exist for a given sample, and a
major difficulty with the ML approach is to identify if the correct one has been found,
see Frithwirth-Schnatter (2006).

In the case of estimation of MixNormal-GARCH models, Ausin and Galeano (2007)
and Bauwens et al. (2007) have devised a Bayesian estimation procedures to avoid such
degenerated states. Alternatively, Broda et al. (2013) have proposed an augmented likeli-
hood function. We don’t adopt any of these computational devices since the Monte Carlo
results, reported below, show that this problem is not a major concern in our case.

The information used to evaluate the likelihood function involves the computation of
further quantities that drive the dynamics of the jump intensity, A;. From the Bayes rule,

it follows that the filtered jumps probabilities are equal to

P (RMt‘Nt =m, [tfl) x P (Nt = m|[t,1)
P (RM|I;_) ’

P (N, =ml|L) = i=0,1,2,... (29

which are then used to recover the jump intensity innovations in equation (21).

4.5 Monte Carlo Simulations

We run a set of Monte Carlo simulations to explore the performance of the ML estimation
of MEM-J in finite samples. We simulate three different specifications with the same p; as
in (19) with no asymmetric effect: HAR-MEM (model in (1)), HAR-MEM-J with constant
A (model in (6)) and HAR-MEM-J with time-varying A; (model in (6) with A specified as
in (20)). The algorithm to simulate pseudo-random variates from a K density is illustrated
in Appendix B. The parameters used in simulation and the results are reported in Table
1. The simulated sample size is set equal to 3000. Due to the computational burden in
estimating the MEM-J the Monte Carlo replications are 500. We investigate the effects
that the over-specification of the jump component can have on the maximum likelihood
estimates. This can be a typical situation which arises when we have to specify nonlinear
models with latent components. We estimate over-specified models (upper and middle
panel of Table 1), i.e. the HAR-MEM-J with time-varying jump intensity, when the data
have been generated with either A equal to zero (i.e. ¢ = ¢ = ¢35 = 0) or with a
constant A. The infinite sum of densities required to compute the likelihood, see (15), is
truncated at m = 10. For values of A\ that are rarely larger than 1, the probability of
observing more than 10 jumps is of order 1078, When the jumps are totally absent, the
unconditional mean of \; = 1;’5;2 is estimated almost equal to zero, meaning that there
is a very limited mixing effect in the conditional density of RM; due to the estimated
jump term. This means that the estimated model is very close to the HAR-MEM which

is the DGP. Indeed, the parameters governing u, are estimated correctly and with small
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RMSE. It should also be noted that the parameter ¢ is not defined under the DGP, but
is estimated when fitting the HAR-MEM-J on the data as it determines the shape of the
K distribution. When jumps are absent, i.e. A = 0, the parameter ¢ is not identified, this
is reflected in a very high RMSE.

When the jumps are present, but A is constant, the impact of the over-specification is
fairly limited, see the middle panel of Table 1, and the distribution of all parameters is
centered on the true values. The estimate of the parameter ¢3 is close to zero with a quite
large RMSE. This evidence also confirms that the HAR-MEM-J with time varying jump
intensity is identified also when A is constant and the estimated model is overspecified.
This means that the sources of variation in E[RM;|I, 1], i.e. p; and ), are separately
identified. In fact, if we look at the estimates of the HAR parameters, they seem unaffected
by this misspecification. In the third case considered, which is the estimate of the correctly
specified model, the maximum likelihood estimates have a very small finite sample bias
and the RMSE’s of ¢1/(1 — ¢2), ¢2 and ¢3 have the same order of magnitude of the other
parameters. In Figure 1, the kernel density estimates of the Monte Carlo distribution
are displayed. The plots show that the finite sample distributions for all parameters are
centred on the true values. Furthermore, the Monte Carlo estimates based on the mixture

density are well behaved and we don’t find any evidence of the presence of multiple local

maxima.
w o s o3 5 v S = 3

DGP: A=0

0.001 0.4 0.15 0.1 0.3 20 0 0 0 0
Mean 0.001 0.399 0.148 0.097 0.302 20.106 38.010 0.009 0.599 0.254
RMSE 0.000 0.021 0.069 0.023 0.076 0.577 40.972 0.033 0.636 0.334
DGP: A =0.25

0.001 0.4 0.15 0.1 0.3 35 20 0.25 0 0
Mean 0.001 0.400 0.152 0.099 0.296 34.957 20.625 0.250 0.479 0.019
RMSE 0.000 0.017 0.050 0.017 0.056 1.646 3.710 0.018 0.611 0.033
DGP: A\ >0

0.001 0.4 0.15 0.1 0.3 35 20 0.2 0.95 0.1
Mean 0.001 0.400 0.147 0.100 0.301 35.011 20.620 0.201 0.931 0.106
RMSE 0.000 0.018 0.056 0.018 0.062 1.394 4.051  0.027 0.060 0.034

Table 1: Monte Carlo results. The true parameter values used in simulation are in bold.
Sample mean and Root mean squared error (RMSE) of maximum likelihood estimates of
simulated HAR-MEM’s models.
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Figure 1: Kernel densities of the Monte Carlo estimates of the MEM-J-);, where \; varies
according to (20).

5 Empirical Results

5.1 Database and estimation of volatility

Our purpose is to model realized measures to estimate the probability and the size of
the volatility jumps once that price jumps have been disentangled from the volatility
dynamics. Indeed, when price jumps are present, the total price variation, or quadratic
variation, is equal to the sum of integrated volatility plus the squared price jumps. The

quadratic variation can be estimated by the sum of the intraday squared returns, rfj , 1.e.
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the realized volatility (or realized variance), RV,

R‘/t — Z (ptj _ptj_1)2 = ZT‘?J t= ]_, ,T (30)

M M
Jj=1 Jj=1

where r;;, = p;; — py;_, is the intraday return and M is the number of intraday observa-
tions. The realized volatility converges to the integrated variance plus the squared jump
component. Barndorff-Nielsen and Shephard (2004), have shown that RV allows for a
direct nonparametric decomposition of the total price variation into its two separate com-
ponents: a continuous part, called Bipower Variation (BPV'), and a discontinuous one,
the squared price jumps. Disentangling the price jumps is important because, as it has
been noted by Huang and Tauchen (2005), their relative contribution to the total price
variability is about 7%. The BPYV is defined as

M
m
BPV, =5 ZQ e, | t=1,..,T (31)
P

and converges to the integrated variance as M diverges. As M increases, the bipower
variation will converge to integrated continuous volatility, which is likely to be affected
by volatility jumps, as shown, for instance by Caporin et al. (2014). Hence, the following
empirical analysis will be based on the estimation of alternative MEM specifications on the
BPV series. It should be noted that, in finite samples, any volatility estimator, including
the BPV, is contaminated by a measurement bias, but it is assumed that the measurement
error can be considered negligible for the purposes of this paper.

The empirical analysis is based on two data sets. The first one includes the bipower
variation of seven stock indexes: S&P500, FTSE 100, DAX, DJIA, NASDAQ 100, CAC 40,
Bovespa, sampled from January 3, 2000 through January 31, 2013, as made available by
the Oxford-Man Institute’s Realised Library. The second data set employed consists of the
intradaily returns of 16 large cap equities quoted on the New York market: Boeing, Bank
of America, City Group, Caterpillar, Federal Express, Honeywell, Hewlett-Packard, IBM,
JP Morgan, Kraft, Pepsi, Procter & Gamble, AT&T, Time Warner, Texas Instruments,
and Wells Fargo. Prices are sampled at one minute frequency, from January 2, 2003 to
June 30, 2012, and they are provided by TickData. The bipower variation is estimated
from the 1-minute prices. In both datasets, the realized measure is expressed as daily
volatility, i.e. the square root of the bipower variation, RM, = /BPV,.

Table A.1 in the Web Appendix reports descriptive statistics of \/BPYV, for the seven
indexes. We observe well-known stylized facts such as high kurtosis and asymmetry, due
to the long upper tail characterizing the empirical density of bipower variation time series,
and the presence of a strong serial correlation as suggested by the very high values of the

auto-correlations at the selected lags 1, 5 and 22.
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Several alternative multiplicative specifications are considered for characterizing the
dynamic behaviour of the square root of the bipower variation of the stock indexes and
individual S&P 500 stocks. We estimate the simple AMEM and the AHAR-MEM in order
to evaluate if there is empirical support for a HAR specification in ;. For what concerns

the multiplicative models with jumps, we consider the following cases:
e Constant jump intensity: from equation (20) we set \; = ¢; and ¢o = ¢35 = 0;
e Time-varying jump intensity: with \; evolving as in equation (20).

To compare the alternative models we consider two different approaches. Firstly, we
pursuit a full-sample evaluation approach, where the MEM and MEM-J specifications are
compared with respect to their fit on the empirical data and a series of statistical tests
for restrictions on the parameters are performed. Secondly, we evaluate model abilities
in capturing the behaviour of the upper tail of the realized measure both in-sample and
out-of-sample. This is not only crucial for risk-management purposes, but also consistent
with the expected ability of the MEM-J in explaining sudden increases in the volatility

that cause observations of the realized measures located in the upper tail.

5.2 Full-sample model comparison

The different specifications adopted for the estimation of the BPV dynamic behavior are
first compared in terms of their ability in capturing the dynamics of the series. To this

end, we analyze the dynamic properties of the residuals

RM,

T E[RM,|I,_,] (32)

e::
The residuals obtained from different model specifications might be compared in terms
of density, moments, as well as with respect to the presence of serial correlation in the
first and second order moments.” Tables from 2 to 5 report the parameter estimates and
the residual statistics. The standardized residuals, €, are obtained by the transformation
& =Fy'[Fr(§)], for t =1,...,n, where Fy() and Fy() are the cumulative density func-
tions of the standard normal and Gamma distributions, respectively. Since the standard
diagnostic statistics and graphs are designed for residuals that are assumed normal dis-
tributed and since the model disturbances are assumed to come from a Gamma density,
this transformation for the residuals is justified. From Tables 2 and 3, which report esti-

mation results for the Asymmetric MEM and the Asymmetric HAR-MEM respectively, it

"As an alternative, model residuals might be computed by standardization of RM,; with respect to its
expected value, involving the impact of p; and (when present) Z;. In this case, innovations are defined
as Pearson’s residuals

_ RM; — E[RMy|I, 1]
V [RM,|I,_1]"?

(33)
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w « B Y v | LogLL Q1 Q1o Q22

SP500 0.0003* 0.3278% 0.5944% 0.0895* 15.9492¢ 15673  0.004  0.000  0.000
FTSE 100  0.0002* 0.3120* 0.6393* 0.0556* 16.6881¢ 16104  0.001  0.000  0.000
DAX 0.0003* 0.3247* 0.6112¢ 0.0703* 17.4627¢ 15202  0.000  0.000  0.000
DJIA 0.0003* 0.3234* 0.6037* 0.0814* 15.6513* | 15742  0.003  0.000  0.000
NSDQ 0.0003* 0.3404% 0.5915* 0.0759* 16.1353* | 15199  0.001  0.000  0.000
CAC 0.0002* 0.3051* 0.6327* 0.0782¢ 17.8968* | 15503  0.000  0.000  0.000
BOVESPA 0.0010* 0.3561* 0.5402¢ 0.0562¢ 15.1477¢ 13829  0.007  0.000  0.000
BA 0.0005* 0.3618% 0.5859* 0.0326% 22.4478% | 10559 0.0387 0.0003 0.0002
BAC 0.0003* 0.5227* 0.4376* 0.0479* 19.8641¢ | 10198 0.0832 0.0000 0.0005
C 0.0002* 0.5214% 0.4535% 0.0285* 24.6862“ | 10049 0.0370 0.0000 0.0005
CAT 0.0007*  0.4162% 0.5206* 0.0403* 22.8666 10340 0.0046 0.0000 0.0020
FDX 0.0005*  0.3995% 0.5435* 0.0355* 21.1708¢ 10516  0.0227 0.0000 0.0000
HON 0.0008* 0.4063* 0.5172¢ 0.0506* 23.0828¢ 10502 0.0516 0.0022 0.0033
HPQ 0.0007*  0.4000* 0.5302* 0.0452¢ 20.6334* | 10335 0.0390 0.0000 0.0004
IBM 0.0005%  0.4420* 0.4968* 0.0371* 25.3562¢ | 11303 0.0968 0.0071 0.0260
JPM 0.0004* 0.4864% 0.4731¢ 0.0366* 22.4146“ 10323 0.0039 0.0000 0.0000
KFT 0.0005*  0.3565% 0.5880* 0.0106* 16.5042¢ 10845 0.0030 0.0000 0.0003
PEP 0.0003* 0.3389% 0.6153* 0.0310* 22.4093“ 11373 0.3856 0.0229 0.0003
PG 0.0004* 0.4130* 0.5288* 0.0279* 23.2476% | 11544 0.0953 0.0005 0.0003
T 0.0003* 0.3980* 0.5617* 0.0253* 25.2941¢ | 10981 0.0234 0.0000 0.0001
TWX 0.0005* 0.4032% 0.5499* 0.0287¢ 28.8549% | 10672 0.0698 0.0024 0.0044
TXN 0.0006* 0.3546% 0.5984% 0.0270* 25.2586“ 10120 0.0527 0.0018 0.0006
WEFC 0.0002*  0.4590* 0.5184* 0.0158  18.9402¢ 10255 0.4878 0.0000 0.0002

Table 2: Estimates of the baseline AMEM (see (18)). The upper part of the table reports
the results for several stock indexes while the lower part refers to 16 NYSE stocks. a, b
and ¢ stand for significance at 1%, 5% and 10% respectively. @i, Q19 and Q9 are the
p-values of the Ljung-Box test for absence of autocorrelation in the residuals, where the

latter are computed as ¢, = %.

is evident that the Asymmetric MEM is unable to capture the persistence that is present
in the bipower variation time series. On the contrary, in the case of the Asymmetric HAR-
MEM the Ljung-Box statistics does not reject the null of no residual autocorrelation in
4 out of the 7 stock indexes considered, and only when we focus on lags up to the 22-nd.
Looking at the individual stocks, at the 5% confidence level we have only 4 out of the
16 equities with some evidences of residual serial correlation, and only over 22 lags. The
number of stocks with serial correlation in the residuals of the AHAR-MEM decreases to
1 if we take the 1% confidence level. If we compare the estimated parameters of the stocks
to those of the indexes, we note the following: stocks are characterized by a somewhat
higher impact of previous day bipower variation levels. Differently, last week and last
month average bipower variations, have a more heterogeneous impact, with some cases
of reduced significance. Heterogeneity in the single assets might be expected. Finally,
we observe how the innovation parameter, v, is sensibly higher than that of the indexes.
This reflects the differences in the density, where the volatility of volatility of the indexes
is higher than that of the individual stocks. This may be due to the different sample
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1¢

w aq Qg as B Y v | LogLL Q1 Q10 Q22 LR, a

SP500 0.0003*  0.3081* 0.1670¢ 0.0980* 0.3297¢ 0.1129* 16.2920% | 15708 0.9042 0.4782 0.3882 70.29¢
FTSE 100 0.0002* 0.3218% 0.2458¢ 0.1246* 0.2396* 0.0684% 16.9945% | 16135 0.9106 0.6457 0.0119 60.46“
DAX 0.0004* 0.3331¢ 0.1294* 0.1103* 0.3506* 0.0817* 17.7801¢ | 15232 0.2201 0.1974 0.0000 60.40°
DJIA 0.0004* 0.3120* 0.1962¢ 0.0928* 0.3052¢ 0.1013* 15.9279% | 15771 0.9133 0.4444 0.5854 57.96°
NSDQ 0.0004*  0.3205% 0.1844* 0.1397* 0.2633% 0.1038% 16.6296% | 15249 0.7336 0.1068 0.0944 99.88%
CAC 0.0003*  0.3216* 0.1508¢ 0.0991* 0.3541¢ 0.0877* 18.1808% | 15530 0.3166 0.0889 0.0000 53.05¢
BOVESPA 0.0011* 0.3495* 0.1634“ 0.1552* 0.2089* 0.0724% 15.5308* | 13870 0.7588 0.6229 0.2247 80.81¢
BA 0.0006* 0.3840*  0.0735 0.1183* 0.3669% 0.0338% 22.8003% | 10578 0.7975 0.7728 0.0449 37.44°
BAC 0.0003*  0.5316%  0.0457  0.1297* 0.2551¢ 0.0442% 20.3631¢ | 10228 0.7118 0.6958 0.6892 59.75¢
C 0.0002*  0.5230* 0.0941¢ 0.1013* 0.2548* 0.0281% 25.1744% | 10072 0.6971 0.7133 0.2519 47.02¢
CAT 0.0009¢ 0.4127¢ 0.2341% 0.1009% 0.1706° 0.0475¢ 23.2921¢ | 10362 0.8485 0.6575 0.8894 44.30¢
FDX 0.0006* 0.4181* 0.0834°¢ 0.1635* 0.2770¢ 0.0339* 21.7095% | 10546 0.7435 0.1739 0.4699 60.45
HON 0.0008* 0.4075% 0.1281°¢ 0.0744* 0.3052% 0.0544% 23.3126% | 10514 0.7512 0.8410 0.1363 23.80°
HPQ 0.0009*  0.4007* 0.1822¢ 0.1222* 0.2076* 0.0577* 21.1230% | 10363 0.7678 0.4510 0.4235 56.44°
IBM 0.0005% 0.4445% 0.1275° 0.0629¢ 0.2973% 0.0401% 25.5941% | 11314 0.9893 0.9638 0.5213 22.40¢
JPM 0.0005¢ 0.49187 0.2013% 0.1077% 0.1527° 0.0349¢ 22.9204¢ | 10349 0.6510 0.8022 0.3092 53.64°
KFT 0.0009* 0.3813% 0.2703* 0.1829* 0.0772  0.0025 16.9128% | 10875 0.6344 0.5964 0.9161 59.10¢
PEP 0.0004* 0.3507¢  0.0655 0.0678” 0.4645% 0.0319¢ 22.5384¢ | 11380 0.6252 0.3843 0.0052 13.83¢
PG 0.0006*  0.4099% 0.2367* 0.0916* 0.1841% 0.0354% 23.6511% | 11565 0.4232 0.9140 0.0508 41.37¢
T 0.0004* 0.4151¢ 0.1219° 0.1062% 0.3077¢ 0.0298% 25.6652¢ | 10999 0.8620 0.6676 0.0327 34.94°
TWX 0.0006* 0.4109% 0.1384° 0.1129¢ 0.2815% 0.0327¢ 29.3522¢ | 10692 0.7001 0.9871 0.4933 40.95¢
TXN 0.0008* 0.3661% 0.1848" 0.1288% 0.2606° 0.0334% 25.6894° | 10140 0.4013 0.8918 0.1558 40.59¢
XOM 0.0004* 0.4773% 0.2018* 0.1539* 0.1374  0.0146  19.4596% | 10287 0.0834 0.4063 0.3548 65.20¢

Table 3: Estimates of the Asymmetric HAR-MEM (see (19)). The upper part of the table reports the results for several stock indexes
while the lower part refers to 16 NYSE stocks. a, b and ¢ stand for significance at 1%, 5% and 10% respectively. Q1, Q19 and ()29 are the
p-values of the Ljung-Box test for absence of autocorrelation in the residuals, where the latter are computed as ¢, = %. LR, o,
is the likelihood ratio test for the nullity of as and as.
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Figure 3: Relative expected jump contribution.  The figures display the ratio

E(][R]\/ft]][:{)t[f}%l]}\;%i[j%l?/jtutil], where E;[RM,|I;_1] is the conditional expectation under AHAR-

MEM-J-);, and Eo[RM;|I; 1] is the conditional expectation under AHAR-MEM.

periods under exam. Given these results, in the rest of the paper we will consider only
the AHAR specification.

As it emerges from the theoretical analysis in Section 3, the MEM-J specification is
well suited to provide a high degree of flexibility for the conditional moments of RM;. The
comparison of AHAR-MEM and AHAR-MEM-J specifications starts off from the simple
evaluation of parameters significance. In fact, obtaining significant coefficients for the
jump intensity, either in the constant or dynamic specification, might be seen as a first
evidence that jumps in volatility are a significant component of the stock indexes bipower
variation. With regard to this aspect, Tables 3 and 4 allow for a first comparison. By
looking at Table 4, we observe that for all series the parameters associated with the jumps,
¢ and A, are all statistically significant, thus supporting the potential relevance of the jump
component Z;. In addition, the parameters driving the evolution of y; are close to those
of the baseline AHAR-MEM specification in Table 3, with the exception of the innovation
term, whose scale parameter v is characterized by a sensible increase. As expected, this
confirms that accounting for the presence of a jump component in the bipower variation
affects the estimate of the parameters of the innovation term distribution. Since the
nuisance parameter ¢ is not defined in the AHAR-MEM, it is not possible to evaluate
the significance of the jump term by a standard LR test, see the discussion in Hansen
(1996).% However, from a comparison of the values in Tables 3 and 4, it clearly emerges
that the log-likelihood functions of the AHAR-MEM-J are much larger than those of the
AHAR-MEM, as their difference is often larger than 100.

8Tn this case simulation based approaches can be used to recover likelihood ratio test critical values
following Hansen (1996). We don’t pursue that strategy due to the computational burden implied in the
estimation of the MEM-J.
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w oy Qs as s Y 4 < ¢1 | LogLL Q1 Q10 ()22

SP500 0.0003* 0.3022¢ 0.1675* 0.1129¢ 0.3129% 0.1086* 22.1149% 17.9948* 0.1791¢ 15789 0.7856 0.4161 0.3145
FTSE 100  0.0002* 0.2943* 0.2179* 0.1604* 0.2595* 0.0591¢ 26.2087* 10.4352% (.1498“ 16313 0.1217 0.6439 0.0016
DAX 0.0003* 0.3037* 0.1427* 0.1317* 0.3508% 0.0738* 25.1605% 13.4345* 0.1643¢ 15310 0.0040 0.0420 0.0000
DJIA 0.0003* 0.3001* 0.1844* 0.1060* 0.3097¢ 0.0961¢ 21.6582% 15.9597* 0.1719¢ 15852 0.4610 0.3420 0.4822
NSDQ 0.0003* 0.3070* 0.1947* 0.1502* 0.2568% 0.1019* 22.5996% 10.9389* 0.1371¢ 15323  0.4407 0.1010 0.0563
CAC40 0.0003* 0.2983* 0.1551* 0.1171* 0.3556% 0.0782¢ 27.2816* 11.6089* 0.1678“ 15623 0.0130 0.0475 0.0000
BOVESPA 0.0009% 0.3216% 0.1287° 0.1673% 0.2559% 0.0704% 22.1820% 20.2391¢ 0.2233° 13946 0.0860 0.2011 0.0660
BA 0.0006* 0.3841¢ 0.0831 0.1486% 0.3134% 0.0251* 35.5468% 20.2166* 0.1970¢ 10670 0.6809 0.9054 0.0349
BAC 0.0003*  0.4990¢ 0.1000¢ 0.1368* 0.2114% 0.0326* 30.7986% 31.7204* 0.1909¢ 10406 0.2802 0.8761 0.7291
C 0.0003% 0.4749% 0.1188" 0.1075% 0.2585% 0.0201¢ 40.2461¢ 16.9422% 0.1743° 10176 0.0187 0.0695 0.0834
CAT 0.0008*  0.4080* 0.2081* 0.1387* 0.1603* 0.0417* 32.8795% 25.9484* 0.1751¢ 10445 0.6661 0.5964 0.7196
FDX 0.0005* 0.3871¢ 0.1284* 0.2018* 0.2180* 0.0349* 31.7331¢ 33.7029* 0.2088“ 10648 0.8995 0.2012 0.3635
HON 0.0007*  0.3840%  0.0838 0.1116% 0.3364% 0.0498* 31.9527% 29.6532% 0.1734¢ 10590 0.1232 0.4163 0.0273
HPQ 0.0008*  0.4055% 0.1367* 0.1519* 0.2146% 0.0432¢ 33.4704% 17.5766* 0.1750¢ 10506  0.9266 0.6977 0.3116
IBM 0.0006% 0.4173* 0.1476° 0.0866¢ 0.2700® 0.0314% 35.7822% 20.8649% 0.1508% 11385 0.2993 0.7714 0.3067
JPM 0.0005* 0.4543% 0.1842* 0.1355% 0.1648% 0.0320* 31.7622% 34.5964* 0.1889¢ 10434 0.0524 0.2157 0.1139
KFT 0.0011  0.3201* 0.2528% 0.2212* 0.0697* 0.0002  28.5538% 35.8665% 0.2717¢ 11061 0.1221 0.3387 0.6590
PEP 0.0004* 0.3140*  0.0953 0.1163* 0.4086% 0.0293* 33.3037¢ 27.9358* 0.1862¢ 11503  0.5895 0.3141 0.0028
PG 0.0006* 0.3817* 0.2081* 0.1253* 0.1891¢ 0.0319* 36.3629* 16.8767* 0.1639¢ 11677 0.6694 0.8454 0.0130
T 0.0005* 0.3915% 0.1344* 0.1321* 0.2758% 0.0255% 36.8422¢ 21.6597* 0.1536° 11094 0.5551 0.6199 0.0105
TWX 0.0006% 0.3923% 0.1262° 0.1486% 0.2651¢ 0.0280% 44.0405% 27.6775% 0.1605¢ 10827 0.6941 0.8620 0.3519
TXN 0.0009* 0.3758% 0.1710° 0.1384% 0.2450% 0.0291¢ 32.8834¢ 27.8139¢ 0.1362¢ 10194 0.2234 0.7120 0.1184
WEC 0.0004%  0.4490% 0.1759” 0.1586% 0.1598¢ 0.0178"* 33.9598¢ 20.8867% 0.2171° 10485 0.3035 0.7847 0.5023

Table 4: Estimates of the Asymmetric HAR-MEM-J. The upper part of the table reports the results for several stock indexes while the lower
part refers to 16 NYSE stocks. a, b and ¢ stand for significance at 1%, 5% and 10% respectively. @1, Qw and (g9 are the p-values of the

Ljung-Box test for absence of autocorrelation in the residuals, where the latter are computed as € = m
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SP500 0.0003* 0.2913* 0.1694* 0.1182% 0.3162* 0.1061% 22.9479¢ 13.9452* 0.1757* 0.9408* 0.1930% 15808 0.3521 0.2656 0.2197 38.14
FTSE 100  0.0002% 0.2748% 0.2189¢ 0.1648% 0.2705% 0.0564% 26.5095%  9.7599¢  0.1477¢ 0.6411°¢ 0.3950° 16335 0.0099 0.2004 0.0003 45.66
DAX 0.0002¢ 0.2886% 0.1415° 0.1356% 0.3653* 0.0699¢ 26.2173% 12.1181¢ 0.1760% 0.9193* 0.2146% 15330 0.0007 0.0021 0.0000 40.44
DJIA 0.0003* 0.2868* 0.1688* 0.1127* 0.3307* 0.0946% 22.4206* 12.9378* 0.1761* 0.9489* (.2248“ 15875 0.1050 0.1101 0.2587 47.00
NSDQ 0.0003* 0.3003* 0.1888* 0.1587* 0.2597* 0.0973% 23.6406% 10.2317* 0.1585% 0.9634* 0.1665% 15342 0.1816 0.0700 0.0283 38.09
CAC 0.0002¢ 0.2774% 0.1365° 0.1152% 0.3978* 0.0770¢ 27.5657% 10.8710¢ 0.1630® 0.9012¢ 0.2313¢ 15652 0.0001 0.0015 0.0000 56.81
BOVESPA  0.0009% 0.3127% 0.1226* 0.1705¢ 0.2687¢ 0.0700® 22.6130% 17.4224% 0.2147% 0.3461¢ 0.3455% 13960 0.0232 0.0766 0.0298 27.41
BA 0.0006* 0.3664¢ 0.0893 0.1424% 0.3322¢ 0.0245% 35.8425% 19.0657¢ 0.1904° 0.8863% 0.1048" 10683 0.7242 0.9225 0.0431 26.30
BAC 0.0004* 0.4785* 0.0937¢ 0.1371* 0.2334* 0.0346* 33.6804¢ 19.4741% 0.1945* 0.9814* 0.0986“ 10427 0.0762 0.6096 0.5985 40.52
C 0.0003* 0.4483% 0.1164° 0.1069% 0.2876* 0.0218% 41.6322% 13.6892¢ 0.1541¢ 0.9911¢ 0.1105% 10230 0.0004 0.0028 0.0112 106.29
CAT 0.0008* 0.3901¢ 0.2122% 0.1395% 0.1718* 0.0419¢ 33.8332% 21.4409* 0.1696° 0.5204 0.2761° 10457 0.2384 0.4199 0.6357 23.97
FDX 0.0005* 0.3742% 0.1433% 0.1946* 0.2224% 0.0348% 33.6948* 22.4715% 0.2008* 0.8536% 0.1597¢ 10660 0.5496 0.1314 0.3446 25.09
HON 0.0007* 0.3665*  0.0947  0.1054* 0.3505* 0.0493¢ 33.8111* 19.3674* 0.1631* 0.9065* 0.2174¢ 10614 0.0257 0.2464 0.0204 48.14
HPQ 0.0008% 0.3892* 0.1621* 0.1445%* 0.2137* 0.0437% 33.9732¢ 17.4021* 0.1697* 0.8364% 0.1549° 10537 0.7540 0.6728 0.3541 63.04
IBM 0.0006% 0.3947* 0.1263¢ 0.0791* 0.3220* 0.0298% 36.6859% 17.7869% 0.1490* 0.9819% 0.1292¢ 11416 0.0218 0.2105 0.1295 62.64
JPM 0.0005* 0.4541* 0.1832% 0.1361* 0.1824* 0.0322% 33.1899¢ 26.7587% 0.1918% 0.9878*  0.0548 10450 0.0524 0.2157 0.1139 31.39
KFT 0.0011° 0.3065% 0.2625% 0.2090*  0.0846 0.0012  30.0529* 27.2279* 0.2694* 0.9673% 0.0791¢ 11079  0.0457 0.2383 0.6070 35.68
PEP 0.0003* 0.2846*  0.0275 0.0765  0.5545% 0.0341* 34.5631¢ 21.7868* 0.1710* 0.8060* 0.2754¢ 11535 0.0208 0.0455 0.0007 64.31
PG 0.0007* 0.3705* 0.2044* 0.1263* 0.1975* 0.0298% 36.6526% 15.1394% 0.1541* 0.9483% 0.1342¢ 11696 0.3166 0.5629 0.0057 37.96
T 0.0005* 0.3682* 0.1356* 0.1256* 0.3060* 0.0246* 37.1412¢ 16.5691* 0.1539* 0.9723* 0.1493“ 11126 0.0960 0.2222 0.0051 63.91
TWX 0.0006% 0.3757* 0.1253¢ 0.1431* 0.2888% 0.0261% 45.4493% 23.1275% 0.1539% 0.7662% 0.2464° 10846 0.2432 0.6658 0.3053 37.17
TXN 0.0009% 0.3625% 0.1785° 0.1390% 0.2463* 0.0296% 34.3740% 19.1028% 0.1306% 0.9704% 0.1152¢ 10208 0.4644 0.8732 0.1554 26.78
WEFC 0.0004% 0.4281¢ 0.1665° 0.1531® 0.1926* 0.0201° 35.7612% 16.2251¢ 0.2086% 0.9266% 0.1493¢ 10505 0.7835 0.9313 0.5639 40.06

Table 5: Estimates of the Asymmetric HAR-MEM-J with time-varying A, see (20).

The upper part of the table reports the results for several

stock indexes while the lower part refers to 16 NYSE stocks. a, b and ¢ stand for significance at 1%, 5% and 10% respectively. Q1, Q19 and Q2

are the p-values of the Ljung-Box test for absence of autocorrelation in the residuals, where the latter are computed as ¢, =
is the likelihood ratio test for the nullity of ¢9 and ¢s.
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Figure 4: Volatility-of-volatility ratio. The figures display the ratio %, where

Vj[RM;|1;-1] is the conditional variance under AHAR-MEM-J-(\;), and Vo[RM;|I;_4] is
the conditional variance under AHAR-MEM.

When the jump intensity parameter is assumed to be time-varying, see Table 5, we
observe changes in parameters associated with the innovation term &; and with the jump
component Z;, while the parameters in p; are not much affected. The estimates of v
and ¢ are generally higher for the individual stocks than those of the indexes. The
estimated unconditional mean of \; is between 0.15 and 0.20 for most stocks, and there are
not relevant differences between stock indexes and individual stocks. Interestingly, most
markets and stocks, among those considered, display estimates of ¢, larger than 0.9. T'wo
notable exceptions are FTSE-100, CAT and BOVESPA. For the latter, the sensitivity
to the news arrival, measured by the parameter ¢3 is close to persistence parameter, i.e.
¢o, this might suggest that the time-varying jump intensity specification is not needed.
However, the LR test for the joint nullity of ¢o and ¢3 takes very large values. Even
though in this case we don’t have any asymptotic theory for the LR test, we believe
that the observed values of the test statistic can reasonably lead to the rejection of the
null hypothesis in all cases considered. Introducing dynamics in the jump intensity is
therefore important to provide the necessary degree of flexibility in the characterization
of the conditional moments of RM,.

Figure 2 reports two examples of the fitted time-varying jump intensity, ), and of the
expected jump component E [Z;|I;_1]. Both the jump intensity and the expected jump
(which is a non-linear function of the jump intensity) increase during the recent crises:
the end of technology market bubble in 2001-2002, the subprime crisis in 2007-2008 and
the European sovereign crisis in 2010. Notably, the most recent crisis seem to be more
relevant in France compared to the others, a somewhat expected result. Figure 3 plots

the impact of a change in the model structure, moving from an AHAR-MEM without
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