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Abstract

We provide clear-cut evidence for economically and statistically significant mul-

tivariate jumps (multi-jumps) occurring simultaneously in stock prices by using a

novel nonparametric test based on smoothed estimators of integrated variances.

Detecting multi-jumps in a panel of liquid stocks is more statistically powerful and

economically informative than the detection of univariate jumps in the market in-

dex. On the contrary of index jumps, multi-jumps can indeed be associated with

sudden and large increases of the variance risk-premium, and possess a statistically

significant forecasting power for future volatility and correlations which implies a

sizable deterioration in the diversification potential of asset allocation.
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1 Introduction

Figure 1 shows the intraday log-returns of four financial stocks (see Table 6) on Decem-

ber, 11th 2007. In that day, a FOMC meeting was taking place, ending with the decision

of lowering the target for federal funds rate of 25 basis points, due to ”slowing economic

growth reflecting the intensification of the housing correction” and ”financial strains”1.

The four financial companies collapsed all together in the afternoon, with a contempora-

neous log-return of approximately −3% which is clearly visible in the figure. The figure

also shows an evident increase, after the collapse, of both the stocks’ volatility and their

correlation. Moreover, the VIX index rose that day to 23.59 from 20.74 (+13.7%).

In the continuous time literature, a price movement of 3% (when the local volatility is

less than 0.5%, thus of more than six standard deviations in volatility units) is typically

modeled as a jump, that is a discontinuous variation of the price process. There are three

possible routes to the detection of collective events like that in Figure 1 in the data: i)

detection of a jump in a portfolio which includes the stocks (e.g., the equity index); ii)

detection of jumps in individual stocks; iii) direct detection of the multivariate jump (or

multi-jump as we call it in this paper). Surprisingly, a lot of effort has been devoted to

i) and ii), both theoretically and empirically, but almost none to iii). In this paper, we

introduce a formal test for the detection of multi-jumps, we argue that the third option is

actually the most effective and we show that it reveals additional economic information

which could not be revealed by the first two.

Multi-jumps are crucial events for asset allocation and risk management, as recognized

by the financial literature. For example, Longin and Solnik (2001) show that correlations

increase after a collective crash in the market, dampening the diversification potential of

portfolio managers, and Das and Uppal (2004) use multivariate jumps to model systemic

risk and its impact on portfolio choice. Bollerslev et al. (2008) use multi-jumps (common

1FOMC press release, December, 11th 2007, available at
http://www.federalreserve.gov/newsevents/press/monetary/20071211a.htm

2

Chiara
Rettangolo



09:35 11:05 12:40 14:15 15:50
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
11−Dec−2007

Time

5−
m

in
ut

es
 re

tu
rn

s 
(%

)

 

 

BAC

C

JPM

WFC

Figure 1: Intraday price changes (log-returns over 5 minutes) of Bank of
America (BAC), Citigroup (C), JP Morgan (JPM) and Wells Fargo (WFC) on
11 December 2007. The four banking stocks collapse altogether around 14.15,
while a FOMC meeting was taking place. We label this event a multi-jump.
After the collapse, both volatility and correlation among stocks increases.

jumps, in their terminology) to explain jumps in the aggregated market index and discuss

that, for asset allocation, it is more important to be able to detect jumps occurring

simultaneously among a large number of assets, since the effect of co-jumps in a pair of

assets is negligible in a huge portfolio; Gilder et al. (2014) also study the relation between

common jumps and jumps in the market portfolio, and relate common jumps and news.

If rare, dramatic multi-jumps can be interpreted as systemic events carrying market-

wide information on economic fundamentals, their occurrence is also likely to affect the

aggregate attitude to risk and thus have an impact on risk premia. For example, Bollerslev

and Todorov (2011) empirically supported the view that risk compensation due to large

jumps is quite large and time-varying, while Drechsler and Yaron (2011) and Drechsler

(2013) highlight the importance of transient non-Gaussian shocks to fundamentals in

explaining the magnitude of risk premia. In this paper, we complement this evidence

by showing that multi-jumps can be associated with large increases in the variance risk

premium.

Despite the statistical, economic and financial importance of multi-jumps, the financial

econometrics literature is still missing a formal test to be used as an effective tool for
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their detection. A vast literature2 concentrated on univariate jump tests. Progress on

developing tests for common jumps in a pair of asset prices was started by Barndorff-

Nielsen and Shephard (2003). They propose a way to separate out the continuous and

co-jump parts of quadratic covariation of a pair of asset prices. Mancini and Gobbi (2012)

developed an alternative threshold-based estimator of continuous covariation. Jacod and

Todorov (2009) proposed two tests for co-jumps, their approach relying on functionals

which depend, asymptotically, on co-jumps only. Finally, Bibinger and Winkelmann

(2013) develop a co-jumps test using spectral methods. However, these methodologies

apply to the case N = 2 only and their generalization to the case N > 2 is non-trivial.

Bollerslev et al. (2008) propose a test for common jumps in a large panel (N → ∞)

which is based on the pairwise cross-product of intraday returns. In empirical work,

detection of multivariate jumps is typically achieved with a simple co-exceedance rule

(see, e.g., Gilder et al., 2014), according to which the multi-jump test is the intersection

of univariate tests.

We fill this gap in the literature by introducing a novel testing procedure for multi-

jumps which naturally applies to the case N ≥ 2, with N finite. The proposed approach

builds on the comparison of two types of suitably introduced smoothed power variations.

High values of the test-statistics (which is asymptotically χ2(N) under the null) signal

the presence of a multi-jump among at least M stocks, with M ≤ N . The smoothing

procedure depends on a bandwidth which can be used to approximately select the desired

M , with higher bandwidth values corresponding to higher M . We propose an automated

bandwidth selection procedure which can be tuned to get the desired M .

Using simulations of realistic price processes which accommodate for the most relevant

empirical features and which are implemented at the 5−minutes frequency (thus making

the testing procedure virtually immune from distortions due to the presence of microstruc-

ture noise), we show that the proposed procedure i) has desirable size properties; ii) is

2Barndorff-Nielsen and Shephard (2006); Lee and Mykland (2008); Jiang and Oomen (2008); Aı̈t-
Sahalia and Jacod (2009) and Christensen et al. (2014), among others.
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more powerful and better sized than the Jacod and Todorov (2009) test, which needs a

much higher frequency (that is, many more data) to become effective; iii) is remarkably

powerful in detecting multi-jumps and iv) strongly outperforms the co-exceedance rule

in terms of power.

Results on real data are also encouraging. When applied to 16 liquid US stocks in the pe-

riod 2003-2012, the test reveals the significant presence of multi-jumps. Not surprisingly,

the multi-jumps occurrence rate becomes smaller with larger bandwidth, that is when we

increase the minimal order M of stocks jumping jointly. However, multi-jumps with large

M (high bandwidth) are rare but important events, which can be always associated with

relevant market-wide economic news. This allows to interpret them as systemic events

affecting the market on a whole.

Importantly, detection of multi-jumps in the stocks reveals additional information with

respect to that conveyed by univariate jumps in the index. Indeed, while theoretically

a multi-jump in the constituents should always correspond to a jump in the index, em-

pirically this is not necessarily true since the multi-jumps could have different directions

(even if empirical evidence reported in Section 5 documents that this is a quite unlikely

event: multi-jumps have typically the same direction) or they could occur in a small sub-

set of stocks, such that the jump in the index could be rather small and hard to detect.

These considerations are confirmed by the data: roughly a half of detected multi-jumps

in our sample cannot be associated with jumps in the index, unveiling information that

univariate jumps could not reveal.

The additional information conveyed by multi-jumps is economically significant. We

show that multi-jumps are strongly correlated with large increases in the variance risk

premium, while univariate jumps on the index are not. This result is in line with recent

theoretical literature, mentioned above, underscoring the impact of jumps in fundamen-

tals on changes in aggregate risk aversion, and the empirical result in Todorov (2010),

who makes use of a parametric model to show that price jumps are linked to the vari-
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ation in the variance risk-premium. When multi-jumps are used, the association with

changes in the variance risk-premium becomes clear-cut also in our fully non-parametric

setting. This further indicates that multi-jumps are particularly suitable to test for sys-

temic events, while questioning the usage of index jumps via univariate statistics to this

purpose.

To further verify the potential empirical impact of multi-jumps, we show that they have

substantial predictive power for volatility and correlations. Both stock correlations and

volatilities are found to significantly increase after the occurrence of a multi-jump, thus

confirming, on a formal statistical ground, the anedoctical evidence in Figure 1. In

particular, the impact of multi-jumps on the correlation coefficient between a given pair

of stocks is quite strong, especially when compared to the impact of idiosyncratic co-jumps

between the same pair. These results have compelling implications for asset allocation.

A risk-averse investor who allocates her wealth in a portfolio of stocks and a risk-free

asset is harmed by the presence of multi-jumps in two ways. The first, which could be

dealt with the model developed by Das and Uppal (2004), is the change in the optimal

allocation strategy due to the presence of multi-jumps with respect to the case without

multi-jumps. The second, which we quantify here, is the impact of multi-jump on the

covariance matrix of the stocks, which implies an additional utility loss due to the increase

in the portfolio variance and the worsening of the diversification potential. The latter

effects would induce a less risky, that is less invested in stocks, optimal allocation strategy

than that recommended by traditional models.

The remainder of the paper is organized as follows. Section 2 describes the continuous-

time jump-diffusion model adopted in the paper. Section 3 explains the formal testing

procedure and provides asymptotic results. Section 4 presents results on simulated price

dynamics. Section 5 applies the test to real data and contains the empirical results and

their implications for asset allocation. Section 6 concludes.

6



2 Model

Denote the log-prices of an N -dimensional vector of assets by X = (X(i))i=1,...,N . We as-

sume that stock prices evolve continuously on a filtered probability space (Ω,F , (F)t∈[0,T ],P)

satisfying the usual conditions, and we assume the following dynamics for X, accommo-

dating for continuous (through Brownian motion) and discontinuous (through jumps)

shocks.

Assumption 1. X is an N-dimensional Ito semimartingale following:

dXt = atdt+ ΣtdWt + dJt

where at (in RN) and Σt (in RN×M) are càdlàg adapted processes, Wt is standard mul-

tivariate Brownian motion in RM and Jt is a finite activity jump process of the form

J
(i)
t =

∑N
(i)
t

k=1 γ
(i)

τ
(i)
k

, i = 1, . . . , N , and N
(i)
t is a non-explosive counting process. Moreover,

we assume that the jump sizes are such that, ∀k = 1, . . ., we have P
(
γ

(i)

τ
(i)
k

= 0

)
= 0,

i = 1, . . . , N .

The model, which is very general and encompasses virtually all parametric models typi-

cally used in financial applications, allows each component of X to include idiosyncratic

jumps (that occur only for a single stock) as well as common jumps among stocks. Define

the process

∆Xt = Xt −Xt− , (1)

and, as an example, consider the case N = 3. The common jumps between X(1) and X(2)

satisfy

∆X
(1)
t ∆X

(2)
t = γ

1(2)
t γ

2(1)
t ∆N12

t + γ
1(23)
t γ

2(13)
t ∆N123

t ,

where N12 and N123 are independent counting processes, while common jumps among all
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the three processes3 satisfy

∆X
(1)
t ∆X

(2)
t ∆X

(3)
t = γ

1(23)
t γ

2(13)
t γ

3(21)
t ∆N123

t .

The inference procedure is designed to test the null

∑
0≤t≤T

∆X
(1)
t ∆X

(2)
t ∆X

(3)
t = 0

against the alternative ∑
0≤t≤T

∆X
(1)
t ∆X

(2)
t ∆X

(3)
t 6= 0.

Note that the presence of a multi-jump among three assets implies the presence of co-

jumps between each pair of them. However, the presence of co-jumps between each pair

of assets does not necessarily imply the presence of a multi-jump among them.

We do not explicitly include in the model market microstructure contaminations, since

the proposed method is thought to be applied at moderately low frequencies (e.g., five

minutes) where the impact of microstructure noise should be negligible. The theory

could however be easily extended to include market microstructure noise by adapting our

return smoothing technique to preaveraged estimators robust to both jumps and market

microstructure noise, as in Podolskij and Vetter (2009) and Hautsch and Podolskij (2013).

The theory could also be extended for infinite activity jumps (see, e.g., Aı̈t-Sahalia and

Jacod, 2012 and the references therein), since the test procedure developed below is based

on smoothed estimators of integrated variances which have been shown to be consistent

even in the presence of this kind of shock, see Mancini (2009) and Mancini and Gobbi

(2012).

3To underscore the methodological contribution of this paper, we use the word co-jump when the
common jump is between two assets, and multi-jumps when the common jump is among three or more
assets.

8



3 Multi-jumps inference

Assume to record X in the interval [0, T ], with T fixed, in the form of n+1 equally spaced

observations4 and denote by ∆ = T/n. Define the evenly sampled logarithmic returns as

∆jX = Xj∆ −X(j−1)∆, j = 1, . . . , n. (2)

In order to formulate the statistical properties of the test, define the following sets:

ΩMJ,N
T = {ω ∈ Ω | the process

N∏
j=1

(
∆X(j)

)
t

is not identically 0}

Ω
N

T = Ω \ ΩMJ,N
T .

The set ΩMJ,N
T contains trajectories with common multi-jumps among all N assets in

[0, T ]. The complementary set Ω
N

T contains trajectories without multi-jumps in N stocks;

it could however contain jumps and multi-jumps up to N − 1 stocks. Testing for multi-

jumps is equivalent to testing the following:

H0 :
(

(Xt(ω))t∈[0,T ] ∈ Ω
N

T

)
vs. H1 :

(
(Xt(ω))t∈[0,T ] ∈ ΩMJ,N

T

)
. (3)

Inference is based on the definition of two newly defined integrated variance estimators

which constitute a generalization, particularly suitable to our application, of the truncated

realized variance estimator of Mancini (2009). To this purpose we need a definition of a

kernel and a bandwidth.

Assumption 2. A kernel is a function K(·) : R → R, which is differentiable with

bounded first derivative almost everywhere in R, and such that K(0) = 1, 0 ≤ K(·) ≤ 1

and limx→∞K(|x|) = 0. The bandwidth process is a sequence Ht,n of processes in RN

4This requirement can be easily generalized to non-equally spaced observations, if we set ∆̄ =
maxi=1,...,n(ti − ti−1), where ti are observation times, and require ∆̄ → 0, see Remark i) of Theorem 4
in Mancini (2009).
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which can be written as Ht,n = hnξt,n, where hn is a sequence such that

lim
n→∞

hn = 0, lim
n→∞

1

hn

√
log n

n
= 0, (4)

and ξt,n is a vector of N positive adapted stochastic process on [0, T ] which are all a.s.

bounded with a strictly positive lower bound.

The bandwidth is written in the form hnξt,n to allow for data-dependent and time-varying

bandwidth. Indeed, in our application ξt,n is the local variance estimated by the obser-

vations themselves, see Eq. (31). We call hn the bandwidth parameter, and provide an

automated criterion for its selection in Section B.1 in the Appendix.

We now define two novel jump-robust integrated variance estimators, which are both

called Smoothed Realized Variance. The first one takes the form

SRV(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣2 ·K (∆jX

(i)

H
(i)
j∆,n

)
, (5)

where X(i), H(i) are the i-th components of the vectors X,H and K(·) and Ht,n are

the kernel and bandwidth defined in Assumption 2. This estimator coincides with the

estimator in Mancini (2009) when K(x) = I{|x|≤Ht,n}, but allows for a different choice

of the kernel. The intuition is however similar to that of Mancini (2009): ”smoothed”

squared returns
∣∣∆jX

(i)
∣∣2 · K (∆jX

(i)/H
(i)
j∆,n

)
are close to squared returns

∣∣∆jX
(i)
∣∣2

when they are small; smoothed squared returns are instead small when returns are large,

where the extent of ”largeness” is gauged by the bandwidth Hj∆,n. Asymptotically, this

procedure annihilates the jumps. The estimator of Mancini (2009) is the most draconian

in this respect, since using the indicator function implies that smoothed returns are zero

when returns are larger than Hj∆,n (dubbed threshold in Mancini’s terminology). The

advantage of replacing the indicator function with a smooth kernel is that it provides an

estimator which depends smoothly on the bandwidth: This stabilizes the procedure in

small samples (by making it less prone to type I and II errors due to erroneous bandwidth
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selection) and also eases bandwidth selection.

The following theorem (proof in Appendix A) shows that SRV(X(i)) in Eq. (5) is a

jump-robust consistent estimator of integrated variance.

Theorem 3.1. Let the process X satisfy Assumption 1, and the kernel and bandwidth

satisfy Assumption 2. Then, as n→∞ we have

SRV(X(i))
p−→
∫ T

0

(σ(i))2
udu, (6)

where σ(i) is the volatility of X
(i)
t .

The following remark introduce a correction to improve the estimator performance in

small samples.

Remark 1. (Small Sample Correction) In order to improve the finite samples un-

biasedness of the estimator defined in Eq. (5), it is advisable to normalize it as follows:

n∑
j=1

∣∣∆jX
(i)
∣∣2 ·K (∆jX

(i)

H
(i)
j∆,n

)

∆
n∑
j=1

K

(
∆jX

(i)

H
(i)
j∆,n

) p−→
∫ T

0

(σ(i))2
udu,

since ∆
∑n

j=1 K

(
∆jX

(i)

H
(i)
j∆,n

)
p−→ 1.

The second estimator takes the form:

S̃RV
N

(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣2 ·(K (∆jX

(i)

H
(i)
j∆,n

)
+

N∏
k=1

(
1−K

(
∆jX

(k)

H
(k)
j∆,n

)))
. (7)

Returns in Eq. (7) are smoothed as in Eq. (5), but they are also kept similar to the

original returns if all multivariate returns are big. Thus, even if, when n → ∞, both

smoothing procedures are meant to annihilate jumps, the smoothing in Eq. (7) will

let multi-jump survive. This intuition is formalized in the following theorem (proof in
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Appendix A), which represents the base for inference and testing.

Theorem 3.2. Let the process X satisfy Assumption 1, and the kernel and bandwidth

satisfy Assumption 2. Then, as n→∞,

S̃RV
N

(X(i))
p−→


∫ T

0
(σ(i))2

udu+
∑

∆X
(1)
t ...∆X

(N)
t 6=0

(
∆X

(i)
t

)2

on ΩMJ,N
T

∫ T
0

(σ(i))2
udu, on Ω

N

T

; (8)

where σ(i) is the volatility of X
(i)
t .

Theorems 3.1 and 3.2 introduce a natural estimator for the multi-jumps on each series.

By the light of Remark 1 the jump size of stock i corresponding to a multi-jump among

all stocks is naturally derived in the following remark.

Remark 2. (Multi-jump Size Estimation)

S̃RV
N

(X(i))− SRV(X(i))

∆
n∑
j=1

K

(
∆jX

(i)

H
(i)
j∆,n

) p−→


∑

∆X
(1)
t ...∆X

(N)
t 6=0

(
∆X

(i)
t

)2

on ΩMJ,N
T

0, on Ω
N

T

. (9)

In order to define the test statistics, we follow Podolskij and Ziggel (2010) and de-

fine a iid N × n matrix of draws (ηij)1≤i≤N,1≤j≤n, defined on the canonical extension

(Ω′,F ′, (F ′)t∈[0,T ],P ′) of the original probability space (Ω,F , (F)t∈[0,T ],P) and indepen-

dent from F . We assume that E
[
ηij
]

= 1 and Var
[
ηij
]

= Vη <∞. Define:

S̃V(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣2 ·K (∆jX

(i)

Hj∆,n

)
· ηij, i = 1, . . . , N, (10)

and

SQ(X(i)) :=
n∑
j=1

∣∣∆jX
(i)
∣∣4 ·K2

(
∆jX

(i)

Hj∆,n

)
, i = 1, . . . , N. (11)
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The test statistics is then defined as

Sn,N :=
1

Vη

N∑
i=1

(
S̃V(X(i))− S̃RV

N
(X(i))

)2

SQ(X(i))
(12)

and its asymptotics is described in the following Theorem (proof in Appendix A).

Theorem 3.3. Under Assumption 1 and 2, if (ηij)1≤i≤N,1≤j≤n are pairwise independent,

as n→∞, it holds: 
Sn,N

d−→ χ2(N), on Ω
N

T

Sn,N
p−→ +∞ on ΩMJ,N

T

; (13)

where χ2(N) denotes the χ-square distribution with N degrees of freedom.

Theorem 3.3 implies that the statistic Sn,N can be used for testing for the presence of

multi-jumps. Under H0, the value of Sn,N will be distributed as a χ2 with N degrees of

freedom. Under H1, that is in the presence of multi-jumps, it will diverge as the number

of observations n increases.

Notice that the test defined in Eq. (12) is of computational order N , in the sense that the

computational burden increases linearly with N . In particular, the test does not require

the estimation of the covariance between stocks (which would increase the computational

burden as N2).

Following the suggestions of Podolskij and Ziggel (2010) for the univariate jump test, the

random variables ηij are allowed to take the values {1 + τ, 1− τ} with equal probability,

so that Vη = τ 2. In both Monte Carlo and empirical exercises we use τ = 0.05.

4 Simulation study

In order to simulate the dynamics of realistic prices, we simulate a multivariate model

that accommodates correlated prices, stochastic volatility, leverage effect, intraday effects,
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idiosyncratic jumps and multi-jumps. All these components have been shown to be

present in the dynamics of high-frequency financial prices, and we use realistic parameter

values. We do not include market microstructure noise (see the discussion above). The

dynamics of the continuous parts of each component are given by the same stochastic

differential equations driven by correlated Brownian motions:

dX
(i)
t = µ dt+ γtσ

(i)
t dW

(i)
t + dJ

(i)
t

d log(σ
(i)
t )2 = (α− β log(σ

(i)
t )2) dt+ ηdW̃

(i)
t ,

(14)

where i = 1, . . . , 16, W (i) and W̃ (i) are standard Brownian motions with corr
(
dW (i), dW̃ (i)

)
=

ρ̃; σ
(i)
t are stochastic volatility factors and γt represent intraday effects. The Brownian

motions W (i) driving the price dynamics can be correlated, as specified below. The pure

jump parts of X(i) are different compound Poisson processes.

The parameters of the model are taken to be as estimated by Andersen et al. (2002) on

S&P500 prices: µ = 0.0304, α = −0.012, β = 0.0145, η = 0.1153, ρ̃ = −0.6127; where

the parameters are expressed in daily units and returns are in percentage. The intraday

effects are given by:

γt =
1

0.1033
(0.1271 · t2 − 0.1260 · t+ 0.1239),

as estimated on S&P500 intraday returns. In our simulations, we always have t ∈ [0, 1],

with initial values for prices and volatility taken from the last simulated day.

The model (14) is discretized with the Euler scheme, using discretization step of ∆ = 1
80

which roughly corresponds to 5-minutes returns for a trading day of 6.5 hours (n = 80).

We generate samples of 1,000 days with different specifications for the jump processes

dJ
(i)
t .
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