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We propose a new Bayesian time-varying CAPM-based beta model to analyse how 
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1990-2005 period. The main results can be summarized as follows. First, beta dynamics 
are significantly affected by economic variables, although managers seem not to care 
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1. Introduction 

 

In this paper we analyze how mutual funds managers use equity and bond predictors in changing 

their portfolio structures over time. How do predictors enter into asset allocation decisions and 

how important are they in the short- and medium-run? How does private and public information 

enter into market timing activity and fund returns? Our main conjecture is that while economic 

predictors may explain little in the short-run, mutual fund managers may attribute more 

importance on the long-run, in this way converging towards instrument-based investment 

strategies. This is indeed our main finding.  

To address the above mentioned questions and test our conjecture, we introduce a novel Bayesian 

time-varying CAPM-based beta. In this model we assume that managers change their systematic 

risk exposure in part by observing how benchmark returns are related to a set of predictors, and in 

part on the basis of their own information set which is unobservable for the econometrician, who 

basically observes only return patterns over time. When changing their exposure to systematic 

risk, managers take into account potential benefits arising from market timing, via benchmark 

predictability, and from private information.   

Our approach is  inspired by a number of different contributions. First, we draw on Mamaysky et 

al. (2008), who estimate time varying mutual funds alphas and betas with a state space model, 

but they find that for most funds conditioning upon information does not improve the model’s fit, 

thus implying a scant role for macroeconomic factors in explaining funds dynamics. Our asset 

pricing model is also similar to that used in Jostova and Philipov (2005), who propose a 
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stochastic mean-reversion beta. As in Pastor and Stambaugh (2009), we develop a framework in 

which predictors are assumed to be imperfect and innovations in the predictive system are 

correlated according to priors based on theoretical and empirical features. We therefore follow 

Ferson and Schadt (1996) and Becker et al. (1999) in assessing timing ability within a conditional 

asset pricing model context. bringing  all these elements together, we introduce a Bayesian 

conditional market timing approach by allowing for correlation among the innovations of 

portfolio returns, time-varying betas and benchmark returns.  

Our empirical analysis is performed on equally weighted portfolios obtained from 5,377 US 

domestic equity mutual funds over the 1980-2005 period using monthly data. Our main result is 

that beta dynamics are significantly affected by conditioning variables. Idiosyncratic beta shocks 

assume a major role in the short-run, thus confirming Mamaysky et al. (2008), while in the 

medium-run predictors play a major role in explaining the total variation in systematic risk 

dynamics, in sharp contrast with Mamaysky et al. (2008). These results suggest the tendency of 

mutual funds to converge over time towards instrument-based investment strategies. The trend 

and term spread seem to be the most important predictors as instrument-based rules in beta 

variations, even though managers do not seem to care about benchmark sensitivities with respect 

to predictors in choosing their instrument exposure, either in sign or in magnitude.  

We also find, by and large, relevant persistence in beta variation, though some significant 

differences arise due to specific fund styles depending also on predictors. Interestingly, the long-

run mean persistence parameters for beta have significant negative correlation, indicating that the 
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lower the long-run mean for beta, the weaker its mean-reversion. This leads us to conclude that 

dynamic funds with significant beta variation exhibit low long-run beta average.  

As for market timing, our Bayesian conditional measure reveals that no mutual fund category 

shows significantly positive timing ability over the 1990-2005 period: most funds have in fact 

negative market timing and negative leverage effects which can be interpreted as generated by 

some sort of hedging. This suggests that fund managers are more focused on long-run hedging 

strategies rather than on pure aggressive market timing strategies. This interpretation is supported 

by a structural VAR-based beta variance decomposition analysis that we use to show that mutual 

funds tend to converge towards instrument-based investment strategies.  

The remainder of the paper is organised as follows. Section 2 describes our model. Section 3 

describes the estimation procedure and discusses our Bayesian approach. Section 4 presents the 

data and section 5 reports the empirical results regarding mutual funds’ performance and beta 

dynamics, while Section 6 discusses results on conditional market timing. Section 7 looks at beta 

dynamics in more depth by exploring the variance decomposition. Section 8 concludes. 

 

2. Fund Dynamics 

Following Admati et al. (1986), we adopt a parsimonious three-equation representation. For each 

fund (or portfolio of funds) analysed, the model contains a portfolio return equation, a time-

varying rule for benchmark risk exposure and a benchmark return forecasting model. The basic 

assumption is that managers are single-period investors who maximise the conditional 

expectation of )( ,tpru , an increasing, concave objective function that depends on returns in 
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excess of the risk-free rate, tftptp RRr ,,,  , where Rp,t denotes the return of the managed 

portfolio at time t and Rf,t the return of the risk-free asset. The expectation is conditional on a set 

of predictive (or information or conditioning) variables zt-1, which we assume stationary and we 

express in demeaned and standardised form, and a private, unobservable signal about the future 

performance of the market, st, which is modelled as a Gaussian variable. As in Becker et al. 

(1999), the maximisation problem is simplified by assuming that portfolio managers choose 

between the risky market portfolio with return Rm,t and the risk-free asset. Hence, we can define 

tmttftp RwRR ,,,  , where wt is the weight of the market portfolio. In this setting, the portfolio 

selection problem is 

(1)   tttp
w

sruE
t

,max , z . 

The solution of the portfolio selection problem is to adjust market exposure w according to z and 

s every period t, assuming that the objective function is time-invariant, i.e. that the conditional 

distribution of the returns rp,t, given the predictors and the signal, is time homogenous. Formally, 

this amounts to: 

(2)  ttt sww ,z . 

This implies that the optimal market portfolio weight at t depends on the conditional mean-

variance ratio of the tangency portfolio, given the information variables z and s at t.‡  

                                                 
‡ Becker et al. (1999) discuss how to find optimal weights in such a setting. Their approach is based on applying first 
order conditions on an objective function characterized by constant Rubinstein-type measure of risk aversion 
(Rubinstein, 1973).   
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As pointed out by Chen et al. (2010), assuming that w evolves over time as a linear function of 

the private signal s implies that the return of the managed portfolio with market timing ability 

should exhibit a convex pattern relative to the returns on the market benchmark. Classical market 

timing approaches have provided with convincing theoretical reasons for such functional form, 

which can be expressed as a quadratic function of market returns (Treynor and Mazuy, 1966) or 

as an “isomorphic correspondence” to some non-linear option strategy pay-off (Merton, 1981). 

However, this convexity hypothesis is still a controversial point in finance. Indeed, empirical 

evidence is contradictory and shows anomalous concavity patterns (e.g. Elton, et al., 2012).  

Other problems arise from the interaction between selectivity and market timing. Glosten and 

Jagannathan (1994) pointed out that market timing may be spuriously signalled by negative 

correlation between the two components if managers take long put option positions which lower 

the fund’s beta when stock returns are low. Grinblatt and Titman (1989) highlighted problems in 

performance measurement when the fund’s beta varies without any active portfolio rebalancing. 

It is thus clear that modelling beta evolution plays a key role in providing an empirical 

counterpart to the theoretical model embedded in equations (1) and (2).  

Our paper uses a novel approach to achieve this goal, enabling us to explain how expected and 

unexpected market returns affect expected and unexpected portfolio returns. In our framework, 

systematic risk exposure is the unobservable fulcrum of a system in which benchmark and fund 

returns are connected through imperfect economic predictors, i.e. the information variables z. 
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2.1. The Model 

Our model generalises the conditional asset pricing approach by assuming that predictors 

affecting benchmark returns also enter the time varying specification for beta as covariates in a 

dynamic stochastic equation§. This means that the predictors contribute to systematic risk 

dynamics by affecting the benchmark and in addition they partially determine beta evolution. At 

one extreme, when predictors are irrelevant, beta evolves in a purely stochastic way. At the other 

extreme, when the beta shock is absent, i.e. within the classical conditional asset pricing literature 

which postulates that beta is a deterministic function of a set of conditioning variables, predictors 

perfectly determine beta. Our specification can flexibly capture how managers use predictability 

to modify their systematic risk exposures. It also encompasses the above extremes as special 

cases.   

We use the following three equations: 

(3) tptmtpptp rr ,,,,    

(4)    tttpL ,1
'

,1   zλ  

(5) tmttmr ,1
'

,  zγ . 

Equation (3) models excess portfolio returns over the risk-free rate at time t. In this equation p  

denotes the risk-adjusted abnormal return, i.e. Jensen’s alpha; tp,  denotes the portfolio’s  

                                                 
§ This is the key assumption in our model: we develop a Bayesian asset pricing model in which betas are not merely 
deterministic functions of state variables. The Bayesian approach is now largely used in asset pricing literature, both 
to study the stock returns (Avramov, 2002; Cremers, 2002), and fund managers (Meligkotsidou and Vrontos, 2008; 
Giannikkis and Vrontos, 2011). Savona (2012) uses the framework developed on an earlier version of our paper 
(Amisano and Savona, 2008) to study hedge funds performance. 
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exposure to systematic risk which is assumed to be time varying, tmr ,  indicates the excess market 

return over the risk-free rate and tp,  the unexpected portfolio return. 

Equation (4) describes how beta varies in time. Here L denotes the lag operator,   the persistence 

parameter on beta,   the unconditional mean of beta, 1tz  the vector of conditioning variables at 

time 1t , γ  the vector of sensitivities of beta with respect to conditioning variables and t, the 

stochastic component to accommodate imperfect predictability in beta evolution**. This term can 

also be viewed as a noisy private signal about future market returns.  

Note that our beta specification accommodates as special cases several patterns of time variation 

for beta. When = 0, i.e. when the predictors 1tz  have no effect on beta, then we have the model 

proposed by Jostova and Philipov (2005). When 1  the process has a unit root, with shocks in 

beta that persist indefinitely; when 0  the process exhibits instantaneous mean reversion. 

Notice that, given stationarity of 1tz , stationarity of beta requires 1 .      

 Equation (5) describes market excess returns over the risk-free rate as a linear function of the 

same predictors in (4), with γ  denoting the vector of sensitivities and 1tz  the vector of 

predictors at time 1t , and tmu ,  is the unexpected market return at time t, hence accommodating 

imperfect predictors.    

                                                 
** In contrast, conditional asset pricing models as in Ferson, Schadt (1996) consider a predictive regression approach 
in which the linear combination of lagged predictors assumes that the true conditional expected beta is explained 
perfectly, i.e. without error, by observed predictors.  



 8

To close the model, we impose a structure on the innovations appearing in all equations. Indeed, 

it seems plausible to assume a positive-definite covariance matrix whose off-diagonal elements 

could arise as a result of a market timing ability as well as leverage effects on beta. Hence, the 

assumption is that the system innovations exhibit the following i.i.d. distribution: 

(6) 





















































































2

2

2

2

2

2

,

,

,

,

0

0

0

mmmppm

mmpp

ppmppp

mmpm

mp

pmpp

tm

t

tp

N



























Σ

Σ

. 

where    mpjmpiijiji ,,,,,,,,2    denote respectively shock variances, covariances and 

correlation coefficients. 

 
3. Estimation Approach 

Model described by equations (3)-(6) is a state space model in which beta is treated as a latent 

variable. In particular, equation (3) is the measurement equation, equation (4) is the state 

equation, and equation (5) endogenizes the covariates appearing in the measurement and state 

equations. Equation (6) describes the statistical properties of the shocks affecting the system.  

To estimate the model we use a state-space based Bayesian approach, treating model parameters 

as random variables. Bayesian inference (see for instance Geweke, 2005, Chapter 2) customarily 

starts by formulating a model and beliefs about model parameters and latent variables implied by 

the model in the form of a multivariate probability distribution, taking values on a given domain. 
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Data are analyzed through the lens of the model and inference is conducted by simulating the 

joint posterior distribution of parameters and latent variables. Data enter this process through the 

likelihood function, i.e. the density of observed data conditional on the model and on parameter 

values.  

We denote by  '''' )(,,,,, Σλγθ vechp   the vector containing all parameters and by  θβ ,p T,p  

the joint prior distribution for parameters and latent variables (the betas). The prior distribution 

for the betas conditional on parameters  θβ ,p T,p  is given by equation (4), while the prior 

distribution of the parameters  θβ ,p T,p  must be explicitly provided by the researcher. 

Obtaining the likelihood function requires integrating out the model's latent variables:†† 

(7) 
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The joint posterior distribution of parameters and latent variables (the betas) is obtained by means 

of Bayes’ theorem as follows: 

(8)      tpmTpTTpmTpTTp ppp ,,, ,,,,, θrrθβrrθβ  . 

In this paper, following Kim and Nelson (1999, chapters 7 and 8), this posterior distribution is 

simulated using a Gibbs sampling-data augmentation procedure, a Markov Chain Monte Carlo 

                                                 
†† In order to (slightly) simplify notation, here we leave dependence on the variables z completely implicit. This is 
perfectly legitimate since these variables are assumed exogenous. 
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(MCMC) technique that generates random samples from a given target distribution, namely the 

joint posterior distribution of the parameters θ  and the state variables given the observed 

returns  mTpTTpp rrθβ ,,, . The presence of endogenous regressors in the state and measurement 

equations requires some modifications to the standard MCMC approach for state space models 

described in Kim and Nelson (1999). The simulation strategy is detailed in Section B of the 

online appendix‡‡.  

 

3.1. Priors 

Prior specification is certainly the most difficult and controversial aspect of Bayesian inference. 

In principle, prior distributions should allow the researcher to incorporate extra-sample 

information in a consistent manner. We construct our prior by exploiting what we can learn from 

a “training sample”, i.e. a set of observations preceding those used in the empirical analysis. This 

is particularly easy for the regression parameters in the equation for market returns equation (5). 

Calling ,00
ˆ and ˆ Sγ  the OLS estimate of  and its estimated covariance matrix obtained by using 

only the observations belonging to the training sample (t = 1, 2, …, T0), for  we use a Gaussian 

prior centred on  ˆ 0γ and prior covariance matrix equal to ,0
ˆ 4 S . 

The training sample approach however is more complicated for the coefficients in the state 

equation, given the presence of latent variables. We therefore use the following two-step 

procedure:  

                                                 
‡‡ The online appendix to this paper is available at the URL: 
www.eco.unibs.it/~amisano/AS2013/AS_2013_appendix.pdf. 
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1) On the training sample observations (t = 1, 2, …, T0) we apply the Ferson and Schadt 

(1996) conditional performance approach and we estimate by OLS the following 

equation: 

(9)   tptmtpptp err ,,1,  z  

(10)   1
'

01   tpptp b zbz  .  

Here betas are deterministically projected on the conditioning variables 1tz . 

2) The resulting estimates   1
'

01
ˆˆˆ

  tpptp b zbz are used as observable counterparts of betas 

in equation (4), which is then estimated using the training sample observations (t = 1, 2, 

…, T0). Denoting ,00
ˆ and ˆ Sψ  the OLS estimate of = [, ’]’ and its estimated 

covariance matrix obtained by the training sample (t = 1, 2, …, T0), for  we define a 

Gaussian prior centred on  ˆ 0ψ and prior covariance matrix equal to ,02

2
ˆ 

R-1
S

R
, where R2 

is the goodness of fit index in the pre-sample estimation of the equation for market 

returns. This scaling is done to reflect the importance of market returns conditional 

predictability in determining how precisely the sensitivity parameters  can be estimated.  

3) The same logic is used to calibrate the prior for p: we define a Gaussian prior centered 

on the OLS estimate of equation (9) based on the pre-sample and with prior variance 

equal to the estimated variance of the OLS estimate. 
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In order to specify a prior on theΣ  covariance matrix of shock innovations, we use the OLS 

estimated residuals over the training sample ),...,2,1,ˆ( 0Ttt ε to calibrate a Wishart prior for the 

inverse of Σ :  

(11) 
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In this way we centre the prior on values which are coherent with those observed in the training 

sample and we rescale degrees of freedom and scale parameters (by multiplying by 4) in order to 

emphasise prior uncertainty. 

Summing up, the specification of our model and of the prior distributions used for estimation is 

guided by the central assumption that managers modulate systematic risk of their portfolios in 

part by observing how the benchmark returns are related to some predictors, and in part on the 

basis of their own information set which is unobservable to the econometrician. This is why the 

same set of covariates 1tz  enters both beta benchmark equations. By changing portfolio 

composition, i.e. modifying betas, managers take into account potential benefits deriving from 

market timing. In turn, market timing arises from benchmark predictability and from truly private 

information. This explains why the equation for beta postulates dependence on the covariates and 

the presence of a stochastic term, orthogonal to past predictors but potentially correlated with 

unexpected market returns. This correlation is the component of market timing that is not 

connected with the capacity to anticipate market returns and truly reflects private information.  
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3.2. Instruments for Beta Process 

The specification of the set of variables z to be used as predictors is a crucial aspect of the 

specification of our model. The literature on predictability of equity returns using lagged values 

of economic and financial variables is extensive. Here we refer to the paper by Ait-Sahalia and 

Brandt (2001), on how to select and combine variables to best predict optimal portfolio weights 

of an investor who works with the following set of predictive variables: 

1) the credit (or default) spread, computed as the yield difference between Moody’s BAA 

and AAA-rated corporate bonds; 

2) the log dividend-to-price ratio of the S&P index, computed as the annual dividend yield of 

the CRSP value-weighted stock index (other works used the sum of dividends paid on the 

S&P index over the past 12 months divided by the current level of the index); 

3) S&P index trend (or momentum) variable computed as the difference between the log of 

the current S&P index level and the log of the average index level over the previous 12 

months; 

4) the term structure slope (or, simply, term spread), measured as the difference between a 

five-year and a one-month discount Treasury yield (other works use the yield difference 

between the ten and one-year government bonds). 

As noted by Ait-Sahalia and Brandt (2001), the economic rationale of this selection is provided 

by Fama and French (1988, 1989), who show that the first three predictors capture cyclical time 

variations in excess stock and bond returns, and Keim and Stambaugh (1986), who use a variable 
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similar to trend in order to predict returns. For our paper, such a choice seems theoretically and 

methodologically consistent, since Ait-Sahalia and Brandt (2001) have shown how to select and 

combine variables to optimally predict an investor’s optimal portfolio weights.  

Note that other studies often start by considering a larger set of predictors and, using some 

preliminary statistical analysis, they narrow down the set of included predictors to generally 4-6 

factors. Based on Ferson and Qian (2004) we limit the number of instruments to 4 so as to have a 

parsimonious model, easy for estimation and interpretation of the results. 

 

3.3. Posterior simulation of the model  

As already mentioned, equations (3), (4), (5) and the set of assumptions (6) on the model shocks 

describe a Gaussian state space system. It is not a standard linear state space model, owing to the 

multiplicative interaction between tmtp r ,,  and  in equation (3), since rm,t is treated as an 

endogenous variable. Nevertheless, the joint posterior distribution of parameters and latent 

variables can be easily simulated by means of a simple and intuitive Gibbs sampling-data 

augmentation procedure. With this in mind, we can partition latent variables and parameters in 

the following five subsets:  

1. the latent variables t ,t = 1, 2, ... T; 

2. p , the intercept parameter in equation (3) ; 

3. the regression parameters in equation (4), namely  ,, ; 

4. the regression parameters in equation (5), namely γ ; 
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5. the parameters in Σ , i.e. the second moment structure of all shocks in the model.  

Given the priors, each subset of random variables is simulated from its conditional posterior 

distribution. Details of these conditional distributions, and of how to simulate them, are given in 

Section A of the online appendix.  

Simulation results are carried out by running 110,000 replications and discarding the first 10,000 

to achieve convergence to the posterior distribution for each of the funds’ portfolios analysed. 

The MCMC algorithm converged for all funds’ portfolios.  

 

4. Data: Mutual funds, Benchmark and Predictors 

We use monthly returns of 5,337 open-ended US equity funds from January 1980 to December 

2005, as supplied by the Centre for Research in Security Prices (CRSP) Survivor-Bias Free U.S. 

Mutual Fund Database. The time period was split into two intervals, the first from January 1980 

to December 1989 and the second from January 1990 to December 2005. The first sub-sample is 

the “training sample” used for prior calibration along the lines described in Section 3.1. The 

second sub-sample, the “estimation sample” is used to generate the posterior distributions of 

parameters and latent variables. Mutual funds included in the sample have at least two years of 

data (48 monthly observations) in the period from January 1990 to December 2005. Monthly 

returns are calculated as total returns, therefore reflecting the reinvestment of dividends and 

capital gains.  

We decided to work with equally weighted portfolios (EWPs) of mutual funds according to the 

ownership style category as provided by Standard and Poor’s Style Name.  The reason why we 
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deal with EWPs is twofold. First, mutual fund benchmarks summarise the behaviour of 

homogeneous classes of funds in terms of style investing, thus giving a “general” view of each 

specific style, which is particularly useful in identifying common characteristics of funds. 

Second, given the high number of individual funds in the sample, it would have been 

computationally intensive to conduct the analysis at an individual funds level and, most likely 

results would have been extremely noisy.  

One drawback of working with funds’ portfolios is that single managers' idiosyncratic 

information is averaged out, but operating at a style level allows to look at funds features which 

are homogeneous among funds being aggregated in the single portfolios.  

The seventeen different EWPs are listed in Table 1.A detailed synthetic data description is 

contained in Section B of the online appendix. 

[Table 1 to appear here] 

 

5. Mutual Fund Performance and Beta Dynamics  

Before inspecting mutual fund performance and beta dynamics, we firstly verify the predictability 

of the selected instruments by running equation (5), using the four demeaned and standardised 

predictors and controlling for heteroskedasticity and autocorrelation with the Newey-West (1987) 

covariance estimator. Unreported results (available upon request) show low R2 for the two 

subsamples and for the whole sample of available data (never exceeding 3 per cent), which is 

consistent with recent empirical evidence (e.g., Campbell and Thompson, 2007). Given the 

structure of our prior distribution, low predictability entails diffuse priors on the parameters on 
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the conditioning variables in equation (4). In other words, given the weak predictability, the 

potential benefits of market timing through predictability look extremely low and the prior 

reflects expectations that managers do not mechanically follow timing rules. Indeed, we expect  

and  to differ in signs and magnitudes. 

We then run the system (3)-(6) for each EWP with a prior elicited as described in Section 3.1. 

From equation (3), note that  is constant and represents a Bayesian measure for each EWP's 

Jensen’s alpha. Since beta is a mean-reverting process affected by imperfect predictors and by 

stochastic shocks, , our model can deliver unbiased estimates of excess returns. in addition, beta 

dynamics gives direct information on market timing ability conditional on public information 

within a Bayesian context via correlations across shocks as described in equation (6). In other 

words, the model delivers a Bayesian Conditional Market Timing measure.  

Table 2 reports the posterior means of parameters and Table 3 shows correlations of parameters 

posterior means across different EWPs. These correlations are intended to provide measures of 

interrelations of estimates across different portfolios.   

Note that in computing correlations for shocks in the system we only refer to off-diagonal 

elements, since they give information on various angles of mutual fund performance; the off-

diagonal elements we used are not covariances but correlations, computed by using the parameter 

in (6).  

[Table 2 to appear here] 

[Table 3 to appear here] 
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Jensen’s alphas are positive and statistically significant for 12 out of 17 EWPs, implying that 

most funds deliver positive extra performance over the inspected period. Interestingly, in Table 3 

we observe that correlation between alphas and  p  estimates is – 0.53 and significant at the 5% 

level. Given that  p  measures the leverage effect in portfolio returns, this result shows that, 

across portfolios, a lower leverage is associated to higher Jensen’s alpha. To better understand 

this result we need to inspect the relationship between leverage effect and market timing since, as 

we will discuss in the next section, we obtain an estimated negative market timing. This means 

that, on the one hand, mutual fund managers react to benchmark returns shocks in an unexpected 

direction. On the other hand, the leverage effect seems to compensate this effect. Moreover, the 

correlation between shocks in mutual fund returns and shocks in benchmark returns, pm , is 

negatively related to the leverage effect and positively related to the market timing: Table 3 

shows that these correlation coefficients, both statistically significant, are respectively – 0.65 and 

0.57. The latter correlation suggests that, in spite of the negative market timing, shocks in 

benchmark returns and shocks in portfolio returns are negatively correlated. This further suggests 

a hedging effect played by innovations in portfolio returns, which tend to offset positive and 

negative benchmark surprises. In other terms, fund managers seem to be more focused on long-

run hedging strategies rather than pure and aggressive market timing strategies. Indeed, such 

investment strategy seems profitable, as the Jensen’s alpha is significantly positive for most of 

the EWPs.  
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Inspection of the parameters describing beta dynamics gives interesting insights on how 

managers modify their risk exposure over time. Let us start by considering the persistence 

parameter . The estimated values indicate high average persistence in beta variation, though 

some differences occur for specific EWP depending on predictors. The mean coefficient is 0.45 

and takes on values between – 0.09 and 0.81. Interestingly, significant persistence coefficient 

tends to be high, indicating significant speed in mean-reversion and so high beta volatility.  

Another interesting finding contained in Table 3 is that  the correlation between the long long-run 

mean and persistence parameters for beta is significant and negative, with a value of– 0.95. This 

suggests that dynamic funds with significant risk exposure variation have in general low beta on 

average, since high persistence reflects high unconditional beta volatility.  

Results in Tables 2 and 3 regarding beta sensitivities with respect to predictors reveal that this set 

of variables matter, at least for specific fund category, and that funds differ significantly in terms 

of instrument-based rules in beta variations. Assuming that managers look at predictors in 

estimating expected benchmark returns before choosing the right risk exposure, the term spread 

and trend seem to be the most important predictors with the higher absolute average coefficients. 

Indeed, we can calculate averages of absolute coefficient values as follows: 0.0275, 0.0254, 

0.0290, 0.0439 for the first, second, third and fourth predictors.  

Considering the statistical significance of the coefficients, we note that we have at least a 

significant predictor for 12 out of 17 EWPs. For each individual predictor, the default spread is 

significant for six style categories while for dividend yield is significant only for three EWPs. 

Term spread and trend are significant in nine and ten cases, respectively.  
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We also note that the term spread coefficient is positive for 5 categories, while for the remaining 

four EWPs the coefficient is negative. The term spread is known to move with the business cycle, 

making it a natural predictor of equity and bond returns§§. The positive coefficient we obtain in 

our analysis is thus economically reasonable, while  a negative sensitivity might be associated 

with funds focusing on specialized categories with returns weakly correlated with the overall U.S. 

equity market. In fact, the funds that exhibit negative term spread coefficients are the Energy 

InfoTech Materials sectors.  

Regarding the Trend predictor, nine out of ten significant coefficients have a positive sign, 

indicating therefore a general tendency to behave as momentum funds. The positive coefficients 

estimated for default spread (five out of six significant coefficients) and dividend yield (two out 

of three significant coefficients) are consistent with the fact that the two variables track variation 

in expected returns as they are largely measures of business conditions (Fama and French, 1989). 

The relationship between  and  coefficients, which can be seen by inspecting correlations 

between each element of with the corresponding one of is also of particular interest. Let us 

recall that the coefficients define predictability of the benchmark returns on the basis of 

predictors, while the  coefficients denote the dependence of betas on predictors. The correlations 

reported in Table 5 indicate that the linear relationships among these two sets of coefficients are 

virtually non-existent: managers do not care about benchmark sensitivities in choosing their 

instrument exposure. A first and obvious reason may be related to the scant predictability of 

                                                 
§§ Chen (1991) and Fama and French (1989) find a positive relation between the yield spread and the future equity 
and bond returns. 
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benchmark returns using instruments. Furthermore, it cannot be excluded that  and  may be 

related in a more complex, non-linear relationship. This possibility will be investigated in our 

future research.    

 

6. Betas and Market Timing  

Within our model’s framework, a manager is market timer if m  is positive. As in Becker et al. 

(1999), we distinguish timing ability that merely reflects publicly available information as 

captured by the set of instrumental variables, from conditional market timing based on better 

information. But, unlike these authors, we also model imperfect predictability and a stochastic 

component in the process for systematic risk. Table 2 reports posterior estimates of the 

correlations among shocks in the system, giving information on both Bayesian conditional 

market timing ability measured by m  and leverage effect measured by p . Furthermore, Table 

3 reports the correlation between portfolio return innovations and benchmark innovations, i.e. 

pm . Note that portfolio innovations are functions of beta innovations, and so pm  should depend 

on the correlation between beta and benchmark innovations.  

Let us start with m , which signals conditional market timing ability. Table 2 shows that no 

mutual fund category was a significant market timer over the 1990-2005 period. Indeed, no 

correlation appears to be positive and statistically significant. We note however that only the Info 

Tech Sector exhibits a positive correlation of 0.12 which is almost significant at 0.1 level (p-

value equal to 0.105) and may lead us to consider the Info Tech Sector as a “persistent” market 
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timer over the time period inspected. Interestingly, this is the unique fund category for which we 

detect some conditional market timing. This result is consistent with the existing literature on 

market timing activity of mutual funds. In fact, Elton, et al. (2012) , using conditional 

sensitivities obtained by extending Ferson and Schadt (1996), find slight evidence of negative 

market timing. Differently from their results, which are not statistically significant, our findings 

denote instead that 13 out 17 EWPs exhibit significant negative market timing. As discussed in 

the previous section, a clear interpretation of our results requires a joint interpretation of market 

timing, leverage effect, and Jensen’s alpha. 

First, from Table 3 we note that the leverage effect, as measured by  p , is significant for four 

EWPs with two positive coefficients and two negative coefficients. On the other hand, pm  is 

significant for ten EWPs, most of them with negative values. These results suggest, therefore, 

that what really matters is the interaction between leverage and market timing. Since on average 

we have negative conditional market timing, the negative combined effect between leverage and 

market timing effect may be, in a sense, good for mutual funds. In fact, anomalous negative 

timing effects (as measured by negative m ) would be indeed mitigated by innovations in 

portfolio returns leading to positive Jensen’s alphas.  

This is also what we find by computing correlations among the parameters. In fact, Table 3 

shows that  pmp ,  corr  is significantly negative (– 0.65). Interestingly, in the same table we 

note that the correlation between the leverage and Jensen’s alpha is significantly negative (– 
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0.52). So, it seems that the negative leverage effect not only compensates the negative market 

timing, but also leads to an increment in the extra performance of mutual funds, i.e. selectivity.  

There is also another important point to consider when interpreting beta dynamics and their 

impacts on portfolio performance. If changes in systematic risk exposure are connected to 

conditioning variables and unobservable shocks, a very important question is how these 

components contribute in explaining the variation in beta, and in turn, the mutual fund 

performance. To this end, in the next section we take up a variance decomposition of the betas.     

 

7. Beta Decomposition  

Our interest in decomposing the beta variance and thus assessing the relative contribution of 

persistence and conditioning variables variability and shocks in explaining beta dynamics, is 

strongly related to Mamaysky et al. (2008). As discussed in the introduction, they did not find 

any significance in adding Treasury bill and dividend yield on the CRSP equally-weighted index 

in their state space model. The estimated coefficients were statistically equal to zero, thus leading 

them to conclude that very few funds use macroeconomic variables.  

This is precisely our main concern: how much do predictors impact on beta dynamics? More 

broadly, we want to measure the relative importance of different sources in explaining the 

observed variance of betas at all horizons..  

To do so, we use the state space estimates for the betas and market returns and we augment the 

model by adding a VAR specification for predictors. This extended system is indeed a VAR 
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model and we use the structural VAR approach of Amisano and Giannini (1997) to decompose 

the instantaneous correlations across shocks.  

The model is based on the following two assumptions: 

1) the unexpected part of beta is allowed to depend on the unexpected component of the 

market benchmark; 

2) the unexpected market benchmark return is allowed to depend simultaneously on shocks 

of the predictors. 

These two reasonable assumptions allow us to identify uncorrelated shocks affecting beta and in 

particular: 

a) an idiosyncratic shock on  beta (the so-called own shock); 

b) a shock on the benchmark; 

c) a set of shocks affecting the predictors. 

Analytically, the VAR specification is as follows:  
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estimates of the state space model (1) - (3) and the estimate of a VAR model for the predictors, it 
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is possible to back out the coefficients of the structural representation (12) and to compute 

variance decompositions for all betas. Table 5 reports results of variance decompositions in terms 

of relative importance attributed to each main driver of beta variability at 1 and 6 months horizon. 

On average, predictors really matter in explaining how the systematic risk exposure changes over 

time. This strongly contrasts with the findings of Mamaysky et al. (2008). At the one month 

horizon predictors account for 16%of the total beta variability, while at the six month horizon the 

quota is 65%. Idiosyncratic beta shocks have major role in the short-run, by accounting for 4% on 

average, hence suggesting that managers strongly use their own private signals to reallocate their 

portfolios. However, in the medium-run, they account for approximately one third of the total 

variation in systematic risk variation, while predictors significantly increase their quota. 

Benchmark innovations play instead a minor role both in the short- and in the medium-run, 

showing quotas of less than 1%.  

These results suggest, therefore, a tendency of mutual funds to converge towards instrument-

based investment strategies. Furthermore, the negligible role assumed by benchmark surprises is 

consistent with the insignificant market timing ability documented by our results..  

 

8. Conclusion 

How does a manager use predictors in changing her/his portfolio structure over time? This is 

what we analyse in this paper. To do this we derived a new model which combines a stochastic 

component, and a systematic component in the time variation pattern. To this end we use a 

predictive system  that jointly considers portfolio excess returns, a time-varying beta and the 
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benchmark excess returns. Predictors are assumed to be imperfect and innovations in the system 

are instantaneously correlated 

We use this model to inspect how managers use predictors in changing their investment strategies 

over time. In addition, our model delivers a measure for conditional market timing which is 

different from that obtained from traditional conditional asset pricing models, since we 

accommodate imperfect predictors and correlation across innovations.  

Our empirical study is conducted on 17 equally weighted sectoral portfolios over the 1980-2005 

period, and shows that instruments impact significantly on beta dynamics, but managers do not 

care about benchmark sensitivities towards predictors in choosing their instrument exposure. 

Intuitively, this result is due to the modest benchmark forecasting abilities of these variables. 

Persistence in beta is significant although we note strong differences across fund categories. 

Interestingly, betas’ long-run means and persistences are negatively correlated.  

In accordance with the existing literature on market timing, we do not find evidence of market 

timing ability. On the other hand, we do find a significant leverage effect. When the market 

timing is anomalously negative, the negative leverage effect offsets the negative timing effect. As 

a consequence, most of the mutual fund categories exhibit significantly positive Jensen’s alpha. 

Using a structural VAR approach to decompose the beta variance, we find that mutual funds 

implement instrument-based investment strategies showing scarce attention towards benchmark 

surprises, which is consistent with anomalous negative market timing ability. 

Kacperczyk et al. (2011) recently offered new interesting insights on the time variability of 

market timing and stock picking. By exploring the performance of actively managed open-end 
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U.S. equity mutual funds from January 1980 until December 2005, the authors show significant 

stock-picking skills in booms and market-timing skills in recessions when conditioning on the 

state of the business cycle. Our model and methodology can be extended to analyze time varying 

market timing and stock picking and we plan to do so in our future research 

.  
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Table 1: Equally weighted portfolios definitions  
All Cap Growth Large Cap Blend Mid Cap Value 
All Cap Value Large Cap Growth Small Cap Blend 
Energy Sector Large Cap Value Small Cap Growth 
Financials Sector Materials Sector Small Cap Value 
Healthcare Sector Mid Cap Blend Utilities Sector 

InfoTech Sector Mid Cap Growth  
 
 
 
 
 
 
Table 2:  Posterior means of parameters  

   p  pm  m     1 2 3 4
       Def. spread Div. yield Trend Term spread

All Cap Growth -0.0033 -0.0755 -0.3176*** 0.0016 0.7127*** 0.3419*** 0.0054 0.0141 0.0124** 0.0048 

All Cap Value -0.0715 0.0883 -0.1187 0.0023*** 0.6973*** 0.2578 0.0023 0.0198 0.0053 0.0119 

Energy Sector 0.1079 -0.2289*** -0.1834*** 0.0028 0.2464 0.7458*** 0.0619 -0.0224 0.0511** -0.1609** 

Financials Sector -0.2344*** 0.2613*** -0.1925*** 0.0051*** 0.0621 0.7344*** -0.0467*** 0.0165 0.0204*** 0.1358*** 

Healthcare Sector 0.1979*** -0.2025*** -0.1506*** 0.0024 0.3769 0.6685*** -0.0384 0.033 0.0676** 0.0336*** 

InfoTech Sector 0.0623 0.3141*** 0.1173 0.0019 -0.0874 1.2791*** 0.0715*** -0.053*** -0.0182*** -0.0397*** 

Large Cap Blend 0.0563 -0.1698*** -0.4461*** 0.0014*** 0.752*** 0.2324*** 0.0036*** 0.002 0.003** 0.0038** 

Large Cap Growth -0.0162 0.0819 -0.0444 0.0017*** 0.7583*** 0.2504 0.0029 0.006 0.0048 0.0023 

Large Cap Value -0.1699*** 0.0779 -0.274*** 0.0027*** 0.2061 0.6733*** -0.0172 0.03** 0.0132** 0.0274*** 

Materials Sector 0.0717 -0.2021*** -0.2463*** 0.0029 0.3577 0.5223*** 0.1352** 0.0501 0.1501** -0.1602*** 

Mid Cap Blend -0.0704 0.0363 -0.3832*** 0.0036*** 0.3838 0.5167 -0.0028 -0.0315 0.0079 -0.0494 

Mid Cap Growth 0.015 0.0975 -0.0032 0.0025** 0.0497 1.03*** -0.0112 0.0278** 0.017** 0.0433*** 

Mid Cap Value 0.055 -0.3211*** -0.2171*** 0.0026*** 0.8113*** 0.1887*** 0.0087*** 0.013 0.0048 0.0053 

Small Cap Blend 0.0469 -0.19*** -0.3936*** 0.0026** 0.5341*** 0.5042*** -0.0113 0.026 0.0376 0.0284*** 

Small Cap Growth 0.0048 0.091 -0.203*** 0.003** 0.3155 0.7447 -0.0295 0.0396 0.0331 0.0258 

Small Cap Value 0.1267** -0.3273*** -0.4359*** 0.0026** 0.7662*** 0.2467*** 0.0149** 0.0219 0.018** 0.0094 

Utilities Sector -0.034 0.203*** -0.221*** 0.0039*** 0.6721*** 0.1313 -0.0038 -0.0248 -0.0289 0.0042 

Mean 0.0085 -0.0274 -0.2185 0.0027 0.4480 0.5335 0.0086 0.0099 0.0235 -0.0043 

Min -0.2344 -0.3273 -0.4462 0.0014 -0.0875 0.1314 -0.0467 -0.0530 -0.0289 -0.1609 

Max 0.1980 0.3141 0.1174 0.0052 0.8114 1.2792 0.1353 0.0502 0.1502 0.1358 

StdDev 0.1057 0.2016 0.1535 0.0009 0.2894 0.3180 0.0444 0.0278 0.0399 0.0704 

Note: the table reports posterior mean estimates of parameters obtained by MCMC posterior simulation of  system 
(3)-(6) for each EWP.  The table reports directly shock correlations.  The superscript *, **, *** denote significance 
at 0.1, 0.5, and 0.01 levels respectively using posterior distribution estimated quantiles.  
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Table 3: Parameter Correlations 

   p  pm  m     1 2 3 4

pm  
-0.6538          

m  
-0.0143 0.5677         

 -0.5247 0.3278 -0.0711        

 0.2124 -0.5123 -0.5122 -0.3524       

 -0.0017 0.4265 0.5847 0.0949 -0.9472      

1 0.3696 -0.2208 0.1405 -0.2407 -0.0940 0.1203     

2 0.0202 -0.3617 -0.2237 -0.0291 0.1375 -0.1573 -0.1727    

3 0.3394 -0.4676 -0.1250 0.0490 -0.1641 0.1160 0.4892 0.5839   

4 -0.4563 0.3577 0.0049 0.2344 0.0114 -0.0325 -0.8638 0.2437 -0.4872  

1 0.5665 -0.7359 -0.4831 -0.1859 0.6032 -0.5411 0.2430 0.1406 0.1507 -0.2730 

2 -0.4549 0.6370 0.1334 0.0653 -0.2633 0.1843 -0.4130 -0.0346 -0.1953 0.3231 

3 0.3439 -0.5701 -0.5314 -0.5723 0.3820 -0.1989 -0.1951 0.1311 -0.1437 0.1054 

4 0.3445 -0.5503 -0.3558 -0.2295 0.3957 -0.3294 0.5169 -0.0010 0.0826 -0.4427 

Note: the table reports correlation across posterior mean of parameters across the different EWPs. Numbers in 
boldface are significant at 0.05 level. 
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Table 4: Variance Decomposition of Betas 

Horizon 1 month  6 month 
 own benchmark others  own benchmark others 
All Cap Growth 81.40 0.70 17.90  64.10 0.61 35.29 
All Cap Value 86.18 0.52 13.30  41.02 0.26 58.72 
Energy Sector 86.48 0.55 12.97  23.91 0.19 75.90 
Financials Sector 86.58 0.49 12.94  19.88 0.13 79.99 
Healthcare Sector 87.40 0.44 12.16  22.29 0.15 77.57 
InfoTech Sector 86.70 0.52 12.79  12.06 0.09 87.86 
Large Cap Blend 74.96 0.96 24.08  62.06 0.85 37.09 
Large Cap Growth 87.51 0.48 12.01  48.27 0.30 51.43 
Large Cap Value 82.63 0.67 16.71  21.37 0.22 78.42 
Materials Sector 84.80 0.66 14.54  24.13 0.24 75.63 
Mid Cap Blend 78.48 0.82 20.70  33.64 0.44 65.91 
Mid Cap Growth 87.86 0.46 11.67  19.70 0.12 80.17 
Mid Cap Value 83.91 0.75 15.35  45.67 0.45 53.88 
Small Cap Blend 77.49 0.93 21.58  33.64 0.50 65.86 
Small Cap Growth 84.73 0.58 14.69  22.13 0.18 77.68 
Small Cap Value 75.09 1.15 23.75  52.31 0.93 46.76 
Utilities Sector 84.69 0.62 14.69  43.58 0.36 56.06 
Mean 83.35 0.66 15.99  34.69 0.35 64.95 
min 74.96 0.44 11.67  12.06 0.09 35.29 
max 87.86 1.15 24.08  64.10 0.93 87.86 
Std. deviation 4.33 0.20 4.14  15.86 0.25 16.07 

Note: decomposition described in Section 7. 
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Appendix A: data description tables and figures 
Table A: Descriptive Statistics of EWPs 
  Mean  Median  Max  Min  StdDev  Skew  Kurtosis 1

Pre-sample: from 1980/01 to 1989/12 
         
All Cap Growth 0.0126 0.0143 0.1380 -0.2388 0.0587 -0.6996 5.2100 0.1230 
All Cap Value 0.0118 0.0111 0.1155 -0.1963 0.0408 -0.8411 7.8104 0.1081 
Energy Sector 0.0123 0.0142 0.1509 -0.2779 0.0574 -1.1655 8.3371 0.0421 
Financials Sector 0.0134 0.0132 0.1012 -0.2138 0.0445 -1.0855 7.4413 0.2292 
Healthcare Sector 0.0125 0.0151 0.1253 -0.2531 0.0531 -0.9797 7.2769 0.0964 
InfoTech Sector 0.0111 0.0111 0.1910 -0.2822 0.0647 -0.4535 5.9564 0.0526 
Large Cap Blend 0.0129 0.0163 0.1127 -0.2073 0.0442 -0.9075 7.2705 0.0874 
Large Cap Growth 0.0142 0.0150 0.1344 -0.2323 0.0503 -0.8656 6.9542 0.1008 
Large Cap Value 0.0139 0.0134 0.1062 -0.1879 0.0400 -0.9645 7.5575 0.0987 
Materials Sector 0.0162 0.0055 0.2834 -0.2907 0.1021 -0.0666 3.5830 0.0148 
Mid Cap Blend 0.0123 0.0140 0.1108 -0.2253 0.0435 -1.5491 10.1126 0.0891 
Mid Cap Growth 0.0141 0.0166 0.1500 -0.2603 0.0537 -0.9285 7.6786 0.1058 
Mid Cap Value 0.0133 0.0141 0.1436 -0.2113 0.0492 -0.5303 6.1128 0.0754 
Small Cap Blend 0.0138 0.0180 0.1613 -0.2688 0.0553 -1.0177 7.7613 0.1414 
Small Cap Growth 0.0144 0.0182 0.1367 -0.2695 0.0558 -1.0354 7.6123 0.1586 
Small Cap Value 0.0125 0.0187 0.1483 -0.2336 0.0548 -0.9434 6.6086 0.2072 
Utilities Sector 0.0145 0.0150 0.1410 -0.0909 0.0354 0.1954 4.6455 0.0990 
         

Estimation Sample: from 1990/01 to 2005/12 
All Cap Growth 0.0104 0.0147 0.1796 -0.1864 0.0543 -0.2687 3.7526 0.0865 
All Cap Value 0.0109 0.0138 0.0884 -0.1632 0.0385 -0.6928 4.7379 0.1136 
Energy Sector 0.0100 0.0083 0.1859 -0.2060 0.0569 0.1933 4.5387 -0.0239 
Financials Sector 0.0135 0.0206 0.1448 -0.2103 0.0475 -0.5703 5.0400 0.0780 
Healthcare Sector 0.0128 0.0140 0.2247 -0.1660 0.0523 0.2579 4.7753 0.0607 
InfoTech Sector 0.0145 0.0176 0.2792 -0.2772 0.0881 -0.2265 3.7749 0.0766 
Large Cap Blend 0.0083 0.0121 0.1060 -0.1403 0.0380 -0.5143 3.8378 -0.0067 
Large Cap Growth 0.0086 0.0111 0.1219 -0.1581 0.0462 -0.4803 3.6214 0.0374 
Large Cap Value 0.0088 0.0123 0.1041 -0.1411 0.0370 -0.5236 4.2825 0.0118 
Materials Sector 0.0075 0.0099 0.3430 -0.2062 0.0736 0.2808 4.7143 -0.0602 
Mid Cap Blend 0.0108 0.0141 0.0971 -0.1759 0.0417 -0.6926 4.5624 0.0939 
Mid Cap Growth 0.0106 0.0138 0.2129 -0.2001 0.0586 -0.2393 4.2383 0.0775 
Mid Cap Value 0.0107 0.0141 0.1060 -0.1638 0.0384 -0.7119 5.1017 0.1123 
Small Cap Blend 0.0103 0.0145 0.1261 -0.1899 0.0472 -0.6104 4.2442 0.1109 
Small Cap Growth 0.0111 0.0172 0.2422 -0.2088 0.0637 -0.1723 4.0304 0.1008 
Small Cap Value 0.0109 0.0181 0.0969 -0.1781 0.0422 -0.8028 4.8689 0.1945 
Utilities Sector 0.0077 0.0079 0.0865 -0.1105 0.0327 -0.4765 3.7264 0.1074 

Note: the table contains monthly descriptive statistics of equally weighted style matched portfolios provided by 
Standard and Poor’s Style Name 5,337 of open-ended US equity mutual funds over the periods from January 1980 to 
December 1989 and from January 1990 to December 2005. 
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Table B: Returns and Predictors 
Panel A: Descriptive Statistics  

  Mean  Median  Max  Min  StdDev  Skew  Kurtosis 1

Pre-sample: from 1979/12 to 1989/11 

Default premium 0.0149 0.0140 0.0266 0.0076 0.0045 0.7744 2.8355 0.8758

Log dividend/price 1.4326 1.4573 1.8888 1.0039 0.2142 -0.0284 2.0655 0.9688

Momentum 0.0602 0.0708 0.2451 -0.2207 0.0951 -0.4853 2.5820 0.8585

Term Premium 0.0086 0.0130 0.0254 -0.0316 0.0119 -1.1313 3.8114 0.8904

         

Estimation Sample: from 1989/12 to 2005/11 

Default premium 0.0083 0.0079 0.0141 0.0053 0.0021 0.9613 3.1976 0.9358

Log dividend/price 0.6931 0.5958 1.3814 0.0831 0.3535 0.0896 1.8260 0.9827

Momentum 0.0420 0.0506 0.2352 -0.2636 0.0884 -0.8523 3.5918 0.8848

Term Premium 0.0143 0.0114 0.0331 -0.0049 0.0105 0.1943 1.6827 0.9800

         

Panel B: Correlations 

Pre-sample: from 1979/12 to 1989/11 

 Default premium Log dividend/price Momentum Term Premium rm (rm)2 Irm>0(rm) Irm<0(rm)

Default premium 1.0000 0.7166 -0.1390 -0.1053 0.0728 0.0067 0.0998 0.0239

Log dividend/price  1.0000 -0.3941 -0.2900 0.0415 -0.0890 0.0255 0.0428

Momentum   1.0000 0.0188 -0.0485 -0.0221 -0.1033 0.0184

Term Premium    1.0000 0.1276 -0.0112 0.0625 0.1468

         

Estimation Sample: from 1989/12 to 2005/11 

 Default premium Log dividend/price Momentum Term Premium rm (rm)2 Irm>0(rm) Irm<0(rm)

Default premium 1.0000 0.0422 -0.4797 0.3794 -0.0276 0.1037 0.0388 -0.0822

Log dividend/price  1.0000 0.0176 0.3136 0.0956 -0.1434 -0.0106 0.1677

Momentum   1.0000 -0.2546 0.0180 -0.2121 -0.0917 0.1163

Term Premium    1.0000 -0.0210 -0.1398 -0.1154 0.0744

Note: Panel A contains monthly descriptive statistics for the four predictors used in this study: the default spread, , 
the log dividend-to-price ratio of the S&P index, the S&P index momentum variableand the term spread. Panel B 
shows correlations of the predictors with: the predictors, the excess stock return rm its square (rm)2 and the Henriksson-
Merton piece-wise term for upward and downward excess stock return, Irm>0(rm) and  Irm<0(rm), namely the indicator 
variable for positive and negative excess stock return, Irm>0 and Irm<0, multiplied by the excess stock return (rm). 
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Figure A: Predictors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This figure shows autocorrelograms and time-series plots for the default spread, the log-dividend-to-price ratio of the 
S&P index, the S&P index trend variable, and the trend variable. The data cover the period from January 1980 
through December 2005 and refer to monthly observations.    
 
 

0.005

0.010

0.015

0.020

0.025

0.030

80 85 90 95 00 05
0.0

0.5

1.0

1.5

2.0

80 85 90 95 00 05

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

80 85 90 95 00 05
-0.04

-0.02

0.00

0.02

0.04

80 85 90 95 00 05

Default Spread Log Dividend Yield

Trend Term Spread

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20 22 24
0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20 22 24

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20 22 24
0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20 22 24

Default Spread Log Dividend Yield

Trend Term Spread

Autocorrelation Lag Autocorrelation Lag

Autocorrelation Lag Autocorrelation Lag



 37

Appendix B: conditional posterior distributions 

B.1 Posterior simulation of the betas 

Conditioning on all parameters and all the data on the benchmark  Ttrmt ,,1,   amounts to 

condition on the socks on market returns mt  and therefore considering the conditional 

distribution: 
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Conditioning on  mt  will therefore affect equations (3) and (4)  as follows: 
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It is possible to run the Kalman filter and the Carter and Kohn (1994) simulation smoother on the 

state space (B.2) and obtain a draw from the conditional posterior distribution of the betas.  

 

B.2 Posterior simulation of p  

Conditioned on all other parameters ( θ ), on the series Tβ  and the data amounts to conditioning 

on shocks t  and mt  . The relevant conditional distribution of pt  is: 
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This of course will change the intercept in the first equation: 
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This result, together with a Gaussian prior pdf for p , with moments 2, 
  produces a 

conditional posterior which is Gaussian: 
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B.3 Posterior simulation of the parameters in the beta equation  

The parameters to be drawn are   ,,c θ . Conditioning on the series of the t s and all the 

other parameters of the model ( θ ), we then observe the whole sequence of pt  and mtu .  

Therefore, the conditional distribution of pt  becomes 
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This induces an extra intercept term in equation (4) which is accounted for by defining as 

dependent variable and regressors in this equation: 
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Therefore, using for θ a Gaussian prior distribution with moments 



Σμ  and , we can apply the 

usual conditional conjugate results and obtain a conditional posterior distribution for θ  which is 

Gaussian: 
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B.4 Posterior simulation of the Λ parameters  

Conditioning on the t  sequence and all the other parameters of the model ( θ ), then it is as if 

we observe  pt  and pt . Therefore the conditional distribution of mtu  is: 
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this induces an extra intercept term in equation (5) which will be then accounted for by defining 

the dependent variable and regressors of this equation: 
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Therefore, using for Λ a Gaussian prior with moments 
Σμ  and , we can apply the usual 

conditional conjugate results and obtain a conditional posterior distribution for Λ  which is 

Gaussian: 
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B.5 Posterior simulation of the Σ parameters  

Conditional on the data, the betas and the remaining parameters ( θ ), using a Wishart prior for 

1Σ , we obtain, via the usual conjugate results, a Wishart conditional posterior: 
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