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We investigate the impact of scheduled macroeconomic announcements on the volatility

of exchange rates by introducing a flexible model formulation. For each macroeconomic

index we estimate cutoff points in the surprise component of the announcement that

specify the degree the volatility process is affected. This degree is quantified by jumps of

unknown size that occur before and at the time of the announcement and then die out

exponentially with unknown rate. We make inferences using a population Markov chain

Monte Carlo reversible jump algorithm and illustrate our methodology by predicting ex-
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1. Introduction

Scheduled announcements of macroeconomic indices have been found to affect deci-

sively the volatility of stocks and exchange rates in a wide range of studies. In this study

we propose a rich model formulation that is capable of exploring how announcement sur-

prises, defined as the absolute percentage differences of the realised minus the Bloomberg

consensus reported values, affect the volatility process of exchange rates.

We propose a model formulation based on two ingredients. The first is a GARCH-

type process that captures the usual stylised facts such as heavy tails and volatility

clustering. The second is a nonparametric, threshold-based process that captures the

impact of announcement surprises. Due to the predictive nature of the GARCH process

and the fact that the announcements are scheduled, our model specification may serve as

a volatility forecasting tool.

The non-linear structure possesses the following characteristics. First, it assumes that

for each macroeconomic index there is a different pre-announcement effect, quantified by

a jump of unknown size in the volatility process. Second, for each index the degree of

announcement surprise has a different impact on the volatility process. To accommodate

this, we define regions in the announcement surprise data that are specified by threshold

points. Depending on both the index and the region of the announcement surprise, a

volatility jump of unknown size that decays exponentially with unknown rate is added to

the volatility process. The number of regions and their corresponding threshold points

are unknown and different for each index.

To make the most of our flexible model framework, we need a powerful inference

tool to explore a large number of models. We adopt Bayesian inference and construct a

population reversible jump Markov chain Monte Carlo (MCMC) algorithm in order to

efficiently sample from both the model and the parameter space. The resulting samples

of posterior summaries of interest can serve as forecasting tools through model averaging.

The methodology proposed here is illustrated in an empirical study in which we use

data of three exchange rates of the U.S. dollar and fifteen U.S. macroeconomic announce-

ments. The results indicate that our proposed model formulation provides more accurate

forecasts than typical conditional volatility models, and this is so even if we enrich the

existing models appropriately so that macroeconomic announcements are incorporated.

Furthermore, we identify the macroeconomic announcements that mostly affect exchange
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rates volatility, and provide insights on the way each announcement affects volatility.

The rest of the paper proceeds as follows. In Section 2 there is a short review of studies

investigating the effect of news announcements on volatility. In Section 3 we present a

new class of models for volatility based on macroeconomic announcements. Section 4

describes the details of the MCMC implementation whereas Section 5 presents the data

and the results. Finally, Section 6 concludes with a short discussion.

2. Announcements and volatility

The impact of macroeconomic announcements on the asset and foreign exchange

(Forex) markets volatility has been the subject of extensive research in past years. A

large number of related studies is based on GARCH type models (Engle, 1982; Boller-

slev, 1986), where additional explanatory variables are used to capture the effect of news

announcements. A common formulation for these models is given as

yt | Ft−1 = µt + εt, εt ∼ N(0, GtHt) (1)

where yt, t = 1, . . . , T , denotes the exchange rate return, Ft denotes the information set

up to time t, µt is the expected value of the mean process at time t, Ht is a function of

some explanatory variables related to news announcements affecting the volatility process

and Gt is a GARCH-type process.

The main difference among these studies stands in the selection of explanatory vari-

ables affecting Ht. In fact, it is not unusual to differ not only on the type of announce-

ments but also in the temporal effect on volatility, for example adopting formulations

specifying before and after announcement effects. In this context, a large number of

studies use indicator variables to account for macroeconomic announcements (Jones et al.

(1998); Bomfim (2000); Kim et al. (2004); Bauwens et al. (2005); Nikkinen et al. (2006)).

In DeGennaro & Shrieves (1997) news announcements are captured by the number of

headlines in each news category on the Reuters money news-alerts, while Hautsch &

Hess (2002) and Brenner et al. (2009) use explanatory variables that capture surprises

on headline figures.

Significant empirical results are also drawn from studies analysing the effect of news

announcements directly on the absolute returns (Ederington & Lee (1993); Mitchell

& Mulherin (1994)); on the implied volatility (Ederington & Lee (1996); Nikkinen &
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Sahlström (2001)); or on the order flows stemming from daily and intraday trades (Evans

& Lyons (2005, 2008)). Flexible Fourier forms have been also adopted by incorporat-

ing ARCH, calendar and macroeconomic announcement effects (Andersen & Bollerslev

(1998b); Bollerslev et al. (2000); Laakkonen (2004)). Andersen et al. (2007a) by measur-

ing separately the continuous sample path variation and the discontinuous jump part of

the quadratic variation process, observe that significant jumps in the realized volatility

process tend to coincide with the release of macroeconomic indices. In statistics litera-

ture, significant jump patterns in daily volatility similar to those advocated in this paper

have been uncovered in, for example, Barndorff-Nielsen & Shephard (2001) and Roberts

et al. (2004).

Although the empirical results from the above studies are in some cases contradic-

tory, there are several points of agreement. First, all relevant studies agree that news

announcements are affecting decisively the volatility of exchange rates and stock markets,

when analysed on either a daily or an intraday basis. Furthermore, all studies underline

that the effect on the volatility is related to the type of announcement and the content

of news, rather than the very act of releasing information. From all the types of news

considered, most studies find that scheduled macroeconomic announcements are the most

important, and their effect turns out to be stronger when compared to ARCH or calendar

effects (DeGennaro & Shrieves (1997); Andersen & Bollerslev (1998b); Bollerslev et al.

(2000); Bauwens et al. (2005)). The documented volatility autocorrelation and the day-

of-the-week volatility patterns seem to depend strongly on the news generating process

and the timing of major macroeconomic announcements (see Ederington & Lee (1993)

for intraday evidence and Ederington & Lee (1996); Jones et al. (1998) for daily data).

In addition, there is evidence that while the surprising factor plays a key role, even news

that come out as expected seem to affect the volatility process (Laakkonen (2004)).

Studies seem to diverge with respect to the direction with which pre-announcement

effects affect volatility. Nikkinen & Sahlström (2001); Hautsch & Hess (2002); Bauwens

et al. (2005) found that volatility increases before news announcements. Contradictory

results providing evidence that the volatility decreases before news announcements ap-

peared in DeGennaro & Shrieves (1997); Bomfim (2000); Brenner et al. (2009).

There are also different results concerning the duration of the effect of macroeco-

nomic announcements. Most of the studies using intraday data find that the effect of
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macroeconomic announcements on the intraday volatility is short lived, lasting from sev-

eral minutes to one or two hours. On the other hand Evans & Lyons (2005) find that

currency markets are still absorbing news for several days after an announcement while

Brenner et al. (2009) estimate that volatility shifts do not offset each other over a three-

day window around the announcement. In a related context, Evans & Lyons (2008)

find that arrival of macro news accounts for the 36% of the total daily variance, while

they point that macro news contribute far more to price variation in the long term than

previously thought.

3. The Proposed Models

3.1. A Flexible Threshold-GARCH model

We propose the following variation of the general model (1). Assume there are K

macroeconomic indices affecting the volatility process, and at time periods denoted by t∗i

there are announcements of index i, i = 1, . . . , K. Then, we propose the model

yt | Ft−1 = µ+ εt, εt ∼ N(0, σ2GtHt) (2)

Gt = (1− α1 − α2) + α1

ε2t−1

σ2Ht−1

+ α2Gt−1 (3)

Ht = 1 +
K∑
i=1

(
Ji∑
j=1

Iij(t
∗
i )γij exp (−rij(t− t∗i )) + si1 (t = t∗i − 1)

)
(4)

Iij(t
∗
i ) = 1

(
cij ≤ Zit∗i

< ci,j+1

)
. (5)

The positive scalar σ2 is considered as the global static error variance whereas the

GARCH process Gt has the form used in the Spline-GARCH model of Engle & Rangel

(2008) with E(Gt) = 1 and positive parameters 0 < α1 + α2 < 1 . The threshold process

Ht > 0 describes the way that announcements affect the volatility. In particular, for

each index i = 1, . . . , K there are Ji regions. Iij(t
∗
i ) is a region-based indicator variable

indicating that region j, j = 1, . . . , Ji, affects volatility through a jump of size γij > −1

that occurred at time t∗i ≤ t, and through an exponential decay with rate rij > 0. The

announcement surprises of index i at time t∗i are expressed through a variable Zit∗i
and

the degree of surprise is determined by threshold points cij, where ci,Ji := ∞. Finally, our

model specification is completed by allowing pre-announcement volatility jumps si > −1

occurring one time period before the announcements.
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We call the above model formulation Flexible Threshold-GARCH model and we em-

phasize its rich flexibility: there are many models with varying number of parameters

specified by the number of regions Ji and the number of indices K that affect volatility.

Call m such a model, M the set of all models and use superscript m to denote the cor-

responding parameters within each model. Then, for each m ∈ M , the parameter vector

is

θm =
(
µm, σm, αm

1 , α
m
2 , K

m, Jm
i , γm

ij , s
m
i , r

m
ij , c

m
ij , i = 1, . . . , Km, j = 1, . . . , Jm

i

)
.

Therefore, our target under a Bayesian inference setup is to estimate the posterior prob-

ability of each model m and the posterior densities of θm within each model m.

An interesting feature of the above formulation is the way Ht is modelled in (4).

Instead of using a functional form such as an exponential function that ensures positivity

of Ht, we prefer to directly use a formulation which results to an immediate sensible

interpretation of the parameters γij, rij and si with respect to the changes occurred to

σ2. A related additive formulation was suggested in Dellaportas et al. (2007). As a side

effect, the prior densities of γij and si are restricted to the regions that make Ht positive.

The effect of the specification (4) in the volatility process is depicted in Figure 1. There

are macroeconomic announcements at time points 3 and 10 of index 1, with different

degrees of surprise, and at time 7 of index 2. Assume that pre-announcement jumps

do not exist. The left panel depicts the three components that are added to produce

the process Ht at the right panel. Note that jump I12 corresponds to a decrease in the

volatility following the release of a macroeconomic index, since we allow positive and

negative jumps (γij) occurring in the volatility.

Figure 1: The effect of explanatory variables in the threshold process.
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3.2. A Spline-GARCH model

Another way to capture, in a non-linear fashion, the volatility shifts caused by news

announcements is to use a modification of the Spline-GARCH model of Engle & Rangel

(2008). We propose an amendment of this model by applying the exponential spline

function to the time instances in which announcements occur and not to equally spaced

time intervals as in Engle & Rangel (2008). The number of spline knots, denoted by K,

is assumed to be unknown. Hence, our proposed Spline-GARCH model is based on (2)

and (3), but (4) and (5) are replaced by

Ht = exp

(
w0t+

K∑
i=1

[
wi ((t− t∗i )+)

2 + γiZit∗i
+ si1 (t = t∗i − 1)

])
, (6)

where (t − t∗i )+ = (t − t∗i ) if t > t∗i and zero otherwise. The parameter vector in this

model, for each model m ∈ M , is

θm = (µm, σm, αm
1 , α

m
2 , w

m
0 , K

m, wm
i , γ

m
i , smi , i = 1, . . . , Km) .

In this way when a variable Zit∗i
is included in the model a new knot is generated,

causing shifts in the variance process. By performing model selection on the number of

variables included in the model we automatically determine the number of knots Km in

this quadratic spline. Thus, the more variables included in the model the more frequent

shifts take place, while their sharpness depends on wi. As in Engle & Rangel (2008), the

values of explanatory variables Zit∗i
and the pre-announcement effect affect exponentially

the volatility process.

4. Inference

4.1. Priors

Our prior specification is non-informative, in the sense that vague proper priors are

proposed, but special care is taken to avoid issues of Lindley’s paradox (Bartlett, 1957)

and model identifiability. For example, as rij increases so that the exponent in (4)

approaches zero, Ht as well as the likelihood function remain constant. Thus, the in-

tegrability of the posterior density conditional on any given model requires the use of

proper priors. We performed the following (necessary) Bayesian data analysis exercise.

For the models used in the empirical analysis, we increased the standard deviations of

all prior densities by a factor of ten. We then examined the robustness of our results to
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the prior dispersion by inspecting posterior model probabilities and posterior summaries

of interest such as volatility predictions. Although the posterior model probabilities do

change slightly, the predictive variance densities based on model averaging remain iden-

tical. This certifies that our prior densities are vague enough not to affect the posterior

summaries of interest. The details of these experiments can be found in Section 5.3.

The prior probabilities of the discrete densities on the model space and on threshold

points are set to be discrete uniforms over all possible models and distinct observed

values of announcement surprises respectively. Within each model, prior densities for the

parameters of the Flexible Threshold-GARCH model are chosen to be as follows. We

first apply transformations to the real line, gij = log(γij + 1), ςi = log(si + 1) and ρij =

log(rij), i = 1, . . . , K, j = 1, . . . , Ji. We then place non-informative priors µ ∼ N(0, 1),

σ2 ∼ IG(10−5, 10−5), α1, α2 ∼ U(0, 1) with α1 +α2 < 1, gij ∼ N(0, 0.42), ςi ∼ N(0, 0.42),

ρij ∼ N(0, 22). Recall from Section 3.1 that these prior densities are constrained so

that Ht > 0. For the Spline-GARCH model we use wi ∼ N(0, 0.0032), γi ∼ N(0, 32),

si ∼ N(0, 0.52).

4.2. The population reversible jump MCMC algorithm

In problems with complex multi-modal distributions standard vanilla MCMC samplers

may fail to efficiently move around the support of the target distribution. A way to deal

with these problems is to adopt Population-based MCMC methods (Geyer (1991); Gilks

et al. (1994); Liu et al. (2000); Liu (2001); Liang & Wong (2001); Jasra et al. (2007a)).

In this setting, MCMC operates by embedding the target density into a sequence of

� = 1, . . . , L independent distributions obtained by simulating L parallel chains, whilst

allowing the chains to interact via various moves. Jasra et al. (2007b) proposed an

extension of these methods to transdimensional parameter spaces and we adopt ideas

from this paper to develop the proposed inference algorithm.

Our population reversible jump algorithm includes the following basic moves. An

exchange move is used to swap information between two adjacent (in terms of temper-

ature) chains by exchanging all variables and associated parameters between them. In

a crossover move only a fraction of the variables with their associated parameters is ex-

changed between two randomly chosen chains. A mutation move is used to update a

chain according to a reversible jump step as suggested by Green (1995), which includes

addition, deletion, replacement, split and merge moves. The basic steps of the Flexible
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Threshold-GARCH reversible jump algorithm that obtains samples (θm,m), m ∈ M , on

spaces of varying dimension follows. The specific details can be found in the Appendix.

The reversible jump Algorithm

• Initialize the chain and sweep over the following:

1. Randomly add, delete or replace an index variable.

2. For all index variables, randomly propose to split or merge

the current threshold points.

3. Update all remaining parameters in the current model through

adaptive random walk Metropolis Hastings kernels.

The above algorithm is enriched by applying a population algorithm. Denote by π be the

reversible jump invariant distribution with states (m, θm). We construct two auxiliary

distributions π� ∝ πζ� , 1 = ζ1 > ζ2 > 0, with ζ� denoting the inverse temperature

parameter in chain �.

The population Algorithm

• Run 3 parallel Markov chains each one with target densities πζ�.

• Every 10 iterations choose randomly between

– an exchange move which changes the states (m, θm) between two

randomly chosen chains which are adjacent in terms of

temperature.

– a crossover move which changes a randomly chosen subset of

variables included in m and its associated parameters θm

between two randomly chosen chains.

• In the rest of the iterations perform a mutation move which updates

the chains according to the reversible jump Algorithm.

The key intuition behind the population algorithm is that we want enough chains to

explore efficiently the model space but not too many so that the algorithm is expensive

in terms of CPU time. In our data the first (untempered) chain had addition/deletion

acceptance rates for different exchange rates between 4.7% and 5.4%, whereas in the third
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tempered chain the corresponding proportions were 7% to 9% respectively. This led to

satisfactory mixing of the chain; see the MCMC diagnostics in Section 5.3. For a suffi-

cient intercommunication between chains we followed Jasra etal. (2007b) and exchanged

information using either an exchange or a crossover move every ten iterations.

The temperature ladder is specified as ζ� = z�−1, where the scalar z, 0 < z < 1, is

calibrated during the burn-in period of the algorithm as follows. We started from z = 0.8

and every 50 exchange move proposals we set z′ = z + δ(0.5 − α), where δ > 0 is a

pre-specified sensitivity parameter and α is the acceptance rate of the exchange move

during the latest 50 exchange move sweeps. The constant δ = 0.1 is chosen so that the

exchange move is accepted about half of the time (Liu, 2001).

4.3. Prediction

We base all our predictions to Bayesian model averaging (see Raftery et al. (1997);

Liu & Maheu (2009)). The posterior distribution of a quantity ∆, which in our case

corresponds to the model averaging variance forecasts, given the data D and the models

m ∈ M , is given as

f(∆ | D) =
∑
m∈M

f(∆ | m,D)f(m | D),

which is an average of the posterior predictive distribution under each model m,

f(∆ | m,D) =

∫
f(∆ | θm,m,D)f(θm | m,D)dθm

weighted by the posterior model probabilities f(m | D).

In our context each state of the Markov chain corresponds to a modelm and associated

parameters θm, so each calculated volatility is being averaged across both model and

parameter posterior densities. To avoid confusion, we call the Flexible Threshold-GARCH

and Spline-GARCH as ’model specifications’. Model averaging takes place with respect

to models m within a model specification.

In the empirical analysis we produce one day ahead out-of-sample forecasts based

on monthly updated in-the-sample parameter estimates. This means that we reran the

MCMC algorithm twelve times to produce daily out-of-sample forecasts for a year. Since

we deal with scheduled announcements, when forming the out-of-sample forecasts the

day of occurrence of each announcement is known a priori, thus we can evaluate the pre-

announcement effect. For the days following the release, when the announcement outcome
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is known, we can directly perform predictions based on the estimated predictive density

conditional on the announced surprise. In the exact date of the release the outcome is

not known a priori, and therefore we cannot predict Iij(t
∗
i ), thus we propose two ways to

perform forecasting. One, adopted in our main analysis, is to use an ‘empirical Bayes’

type estimator that estimates the probability of the not yet observed Iij(t
∗
i ) with its

past (in-the-sample) sample average. The second estimator relies on the hypothesis that

the news announcement will lie close to the ‘Bloomberg consensus’, so that Ii1(t
∗
i ) =

1
(
ci1 ≤ Zit∗i

< ci,2
)
. In our empirical study it turned out that the former estimator is

slightly better than the latter; but we suggest that choice between them should be based

on the degree of belief one has to the first or the second assumption underlying their

choices.

To evaluate the predictive performance of each model specification we rely first on

robust loss functions evaluated based on a true volatility proxy. We adopt the MSE and

QLIKE loss functions defined as

MSE =
1

T

T∑
t=1

(
σ̂2
t − ht

)2

QLIKE =
1

T

T∑
t=1

(
log ht +

σ̂2
t

ht

)

where ht denotes variance forecast for day t and the proxy σ̂2 is the realized variance ob-

tained using 1-minute high frequency data; see Andersen & Bollerslev (1998a); Barndorff-

Nielsen & Shephard (2002, 2004). Patton (2011) notes that MSE and QLIKE loss func-

tions are robust in the sense that the ranking of any two volatility forecasts is the same

whether it is done using the true conditional variance or some conditionally unbiased

volatility proxy.

A second criterion used to evaluate the predictive ability of the models is based on

the optimal pools methodology of Geweke & Amisano (2011), also employed by Jensen &

Maheu (2010). Model comparison under the optimal prediction pool methodology mixes

the predictive densities of each model specification and sets the mixing weights equal to

the value that maximizes the log pooled predictive score. The larger the mixing weight

the more important the model specification is in predicting future outcomes. Denote

with f(yt|Ft−1, A) the probability density for the exchange rate series yt under a model

specification A and the available information set Ft−1. The respective log-predictive score
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is given as

LS =
T∑
t=1

log(f(yt|Ft−1, A)).

Then, for a pool model specifications A1, ..., An, we seek to find the weights w∗
i that

maximize the log predictive score function

w∗
i = argmax

wi

T∑
t=1

log

(
n∑

i=1

wif(yt|Ft−1, Ai)

)
.

5. Empirical study

5.1. The data

Our data set consists of 3131 daily observations from 1/1/2002 (i.e. since the intro-

duction of the euro currency) up to 31/12/2013 of the Euro-dollar (EURUSD), British

pound-dollar (GBPUSD) and Dollar-Swiss franc (USDCHF) exchange rates. The data

were obtained from Bloomberg. The diagnostics with respect to the macroeconomic an-

nouncements effects on the volatility of exchange rates are obtained on basis of the full

sample. The predictive ability of the model specifications is evaluated for 261 observations

in 2013 by forming one step ahead out-of-sample forecasts and estimating the parameters

and model probabilities on a rolling window basis, as described in Section 4.3. For this

exercise 1-minute high frequency data for the year 2013 (approximately 370,000 obser-

vations) over the three exchange rates were employed to calculate the required realized

volatilities.

We used surprises of 15 monthly U.S. scheduled macroeconomic announcements, that

we believed that they may affect the volatility process and/or have been found to explain

volatility fluctuation by previous empirical studies. In the full sample (2002-2013) there

are 144 observations for each macroeconomic announcement. The surprises are defined as

the absolute percentage difference of the realised minus the Bloomberg consensus reported

values. The macroeconomic announcements considered are presented in Table 1.

Under the Flexible Threshold-GARCH specification, model selection takes place with

respect to the fifteen macroeconomic announcements and to the number and location

of threshold points. We report in the last column of Table 1 the maximum number

of regions, which coincides with the number of different (distinct) observations of each

macroeconomic announcement.
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Table 1: List of the macroeconomic announcements (K) and surprises (Zit∗
i
) descriptive statistics; min-

imum values are equal to zero.

Macroeconomic announcement Mean St. dev. Median Maximum Maximum number of regions (Ji)

(×100) (×100) (×100) (×100) (different observations out of 144)

1 GDP QoQ (Annualized) 0.33 0.34 0.20 1.70 15

2 Industrial Production 0.29 0.26 0.25 2.00 14

3 Durable Goods Orders 1.77 1.57 1.35 8.20 44

4 Wholesale Inventories 0.41 0.32 0.30 1.80 15

5 Advance Retail Sales 0.39 0.35 0.30 1.80 14

6 Housing Starts 5.47 4.44 4.58 29.56 140

7 ISM Manufacturing 2.99 2.56 2.31 14.23 130

8 ISM Non-Manufacturing 3.72 2.95 3.29 15.10 138

9 Leading Indicators 0.14 0.13 0.10 0.50 6

10 Consumer Confidence 6.01 6.11 4.00 31.99 135

11 Consumer Price Index (MoM) 0.10 0.09 0.10 0.40 5

12 Producer Price Index (MoM) 0.37 0.33 0.30 1.70 15

13 Trade Balance 5.84 5.07 4.74 27.78 139

14 Unemployment Rate 0.12 0.11 0.10 0.50 6

15 Personal Income 0.19 0.27 0.10 1.80 13

5.2. Results

We first report the results with respect to the effect of the macroeconomic announce-

ments on the volatility of the three exchange rates under the Flexible Threshold-GARCH

and Spline-GARCH specifications. The four models with the highest estimated poste-

rior probability within each specification and exchange rate are presented in Table 2.

Although most of the macroeconomic announcements are included in the four highest

posterior density models of all specifications, we observe that the Consumer Confidence

(no. 10) is present in most of the models across all specifications and exchange rates and

that Unemployment Rate (no. 14) is present in the four best models under the Flexible

Threshold-GARCH specification in both EURUSD and USDCHF currencies.

A quantity usually adopted to help identifying important regressors in high dimen-

sional regression type problems is the marginal probability of inclusion (see Barbieri &

Berger, 2004), calculated as the percentage of times a variable is observed in the transdi-

mensional MCMC sample. Denoting with f̂(m | D) the estimated posterior probability

of a model m, the probability of inclusion of macroeconomic announcement i is given as

pi =
∑

m∈M i

f̂(m | D),
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Table 2: The four models with the highest posterior probability for each exchange rate and their estimated

posterior probabilities under the Flexible Threshold-GARCH and Spline-GARCH specifications.

Flexible Threshold-GARCH Spline-GARCH

EURUSD

Model Variables Probability No. of parameters* Variables Probability No. of parameters

First 6,10,13,14 0.0253 402 7 0.1860 8

Second 4,10,11,13,14 0.0238 301 7,10 0.1483 11

Third 10,11,13,14 0.0195 290 6,7 0.1258 11

Fourth 10,11,14 0.0167 153 6,7,10 0.0536 14

GBPUSD

First 7,10 0.1035 270 3,10 0.2601 11

Second 3,7,10 0.0639 323 10 0.2502 8

Third 7,8,10 0.0281 423 3,4,10 0.1671 14

Fourth 8,10 0.0264 244 4,10 0.0921 11

USDCHF

First 6,8,10,14 0.0945 392 3,4,10 0.2161 14

Second 6,7,8,10,14 0.0701 543 10 0.0911 8

Third 6,8,10,14,15 0.0362 425 7,10 0.0646 11

Fourth 6,8,10,11,14 0.0241 419 3,10 0.0597 11

*The number of parameters under the threshold point combination with the highest posterior probability is reported.

where M i denotes all the models visited by the algorithm in which macroeconomic an-

nouncement i is present.

Table 3 lists the macroeconomic announcements according to their marginal proba-

bility of inclusion in the two model specifications. The results are in accordance to those

analysed on basis of the four most probable models of Table 2. It is interesting to no-

tice that different announcements affect each exchange rate. For example Unemployment

rate, found as an important announcement in previous studies (Ederington & Lee, 1993;

Andersen & Bollerslev, 1998b; Nikkinen & Sahlström, 2001), has marginal probability

of inclusion 100% in EURUSD and USDCHF (Flexible Threshold-GARCH specifica-

tion), but below 9% for GBPUSD. However, we note that Consumer Confidence has high

probability of inclusion in all exchange rates. Another interesting observation is that

announcements related to actual growth such as GDP, Industrial Production and Per-

sonal Income display low probability of inclusion (below 30%) under both specifications

for all currencies. On the other hand sample surveys for the condition of the economy,

such as ISM Manufacturing, ISM Non-Manufacturing and Consumer Confidence seem to

affect more the volatility of exchange rates. Presumably, this can be attributed to the
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Table 3: Marginal probability of inclusion of macroeconomic announcements

Macroeconomic announcement Flexible Threshold-GARCH Spline-GARCH

EURUSD GBPUSD USDCHF EURUSD GBPUSD USDCHF

1 GDP QoQ (Annualized) 0.1398 0.1264 0.1034 0.0688 0.0331 0.0272

2 Industrial Production 0.2525 0.0803 0.0596 0.0474 0.0210 0.0311

3 Durable Goods Orders 0.0349 0.3581 0.1961 0.0245 0.5851 0.5134

4 Wholesale Inventories 0.5648 0.2021 0.0753 0.0204 0.3262 0.4945

5 Advance Retail Sales 0.1628 0.1761 0.0558 0.0345 0.0308 0.0461

6 Housing Starts 0.3817 0.1312 0.7811 0.3130 0.0066 0.1439

7 ISM Manufacturing 0.3917 0.7699 0.5246 0.9393 0.0326 0.4247

8 ISM Non-Manufacturing 0.1400 0.2710 1.0000 0.0395 0.0199 0.0157

9 Leading Indicators 0.2412 0.1151 0.2330 0.0813 0.0195 0.0757

10 Consumer Confidence 0.8311 1.0000 0.7555 0.4167 0.9999 0.9293

11 Consumer Price Index (MoM) 0.5086 0.1085 0.2919 0.0430 0.0321 0.0374

12 Producer Price Index (MoM) 0.0703 0.0658 0.1406 0.0168 0.0160 0.0156

13 Trade Balance 0.4673 0.1072 0.0699 0.0048 0.0043 0.0209

14 Unemployment Rate 1.0000 0.0885 1.0000 0.0677 0.0471 0.0314

15 Personal Income 0.1088 0.0765 0.2829 0.1403 0.0154 0.0503

The two announcements with the highest marginal probability of inclusion for each case are denoted with bold.

fact that changes in actual growth have been mainly absorbed by results of indices that

provide advance signs for the condition of the economy, such as confidence and sentiment

reports, or other announcements with this characteristic such as Durable Goods Orders

or Housing Starts, the latter being also related to the financial crisis of 2008.

It is interesting to investigate whether days with certain macroecoeconomic announce-

ments provide better predictive ability when compared with non-announcements days.

We examined the one-day-ahead predictive likelihood of the model specifications as in

Jensen & Maheu (2013), but we did not observe any significant difference in days with

largest one-day-ahead predicitive likelihoods in any announcement. As an example, see

Figure 2 in which the Consumer Confidence and Unemployment rate announcements are

depicted together with predictive likelihoods.

Table 4 presents summary statistics for the posterior densities of pre-announcement

effects under the highest posterior probability model of each specification. There is a

sign agreement in relevant specifications that represents a drop of volatility before the

announcement of Consumer Confidence. It is evident that the pre-announcement effect

depends on the announcement and the related exchange rate and can be positive or neg-

ative. To this respect we observe an increase in the volatility of EURUSD and USDCHF
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Figure 2: One-day-ahead predictive likelihood under the Flexible Threshold-GARCH model; EURUSD

currency. Circles represent the announcement days of the Consumer Confidence index and squares of

the Unemployment rate.

the day before the announcement of Unemployment rate.

Figures 3 and 4 depict estimates of the posterior means of jump sizes γij and decay

rates rij across all observed threshold points for the model with the highest posterior

probability of Table 2, under the Flexible Threshold-GARCH specification for EURUSD

exchange rate. It seems that the hypothesis that the larger the degree of surprise (defined

on basis of the threshold points cij), the larger the size of jump (γij) in the volatility is

not confirmed. As noted in several event studies (Jones et al. (1998); Hautsch & Hess

(2002); Laakkonen (2004); Andersen et al. (2007b)) since the effect of an announcement

is dependent to past or anticipated announcements, it is hard to isolate it in a changing

macroeconomic environment.

However certain interesting features are observed. The 197 estimated size of jump

parameters range from -0.66 (66% decrease in the volatility at the day of announcement),

up to 2.02 (202% increase). The 90% of these parameters range from -0.50 to 1.17.

Respectively the 90% of rates of decay rij estimates range from 0.04 up to 29.4. The

lower the value of the rate of decay the longer the impact of a given jump in volatility.

Half of them lie below the unity, which corresponds to an impact of about 36.8% of

the original jump at the day following the announcement, 13.5% two days after the

16



Table 4: Pre-announcement effect (ςi) on the volatility based on models with the highest posterior

probability; posterior standard deviations are in brackets.

Macroeconomic announcement Flexible Threshold-GARCH Spline-GARCH

EURUSD GBPUSD USDCHF EURUSD GBPUSD USDCHF

3 Durable Goods Orders -0.161 [0.130] -0.395 [0.115]

4 Wholesale Inventories -0.222 [0.116]

6 Housing Starts 0.373 [0.023] 0.0001 [0.0004]

7 ISM Manufacturing -0.088 [0.080] 0.325 [0.127]

8 ISM Non-Manufacturing 0.149 [0.0003]

10 Consumer Confidence -0.340 [0.007] -0.664 [0.086] -0.337 [0.014] -0.661 [0.125] -0.377 [0.128]

13 Trade Balance -0.008 [0.010]

14 Unemployment Rate 0.447 [0.012] 0.111 [0.012]

announcement and 5% three days after an announcement. The 25% of estimates lie

below the value 0.23, which corresponds to an effect with rather long memory, having

10% of its initial magnitude even 10 days after an announcement. These results are in

line with the findings of Evans & Lyons (2005, 2008) and Brenner et al. (2009), that found

macroeconomic releases to affect volatility several days following the announcement.

We now turn to forecasting aspects of our specifications. We stress that forecasts are

not based on one model but on model averaging. This fact allows borrowing strength be-

tween parameter estimates across models and therefore obtain robust volatility forecasts.

For comparative reasons besides the Flexible-Threshold GARCH and Spline-GARCH, we

report the results under a typical GARCH(1,1) specification.

Figure 5 depicts in-the-sample (2002-2012) variance estimates and out-of-sample (2013)

variance predictions under each model specification for the EURUSD currency. These

can be visually compared with squared residuals and realized volatility respectively. It is

clear that specifications which use information from the macroeconomic announcements

are more spiky than the usual smooth GARCH estimates. This is in line with the findings

of various empirical studies (DeGennaro & Shrieves, 1997; Andersen & Bollerslev, 1998b;

Bollerslev et al., 2000; Bauwens et al., 2005), in which the effects of news on the volatility

are found to be stronger than that of GARCH effects.

In Figure 6 the out-of-sample volatility predictions are displayed for the three exchange

rates under the Flexible Threshold-GARCH specification. The ‘empirical Bayes’ and

‘Bloomberg consensus’ estimators are nearly indistinguisable. In Table 5 we present the
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Figure 3: Posterior means of jump size parameters γij against announcement surprises threshold points,

under the first best model of the Flexible Threshold-GARCH specification for the EURUSD exchange

rate.

forecast errors, log-predictive scores and optimal pool weights for all exchange rates un-

der all specifications. We observe that under all criteria the Flexible Threshold-GARCH

specification dominates over the Spline-GARCH and GARCH specifications for the EU-

RUSD and USDCHF exchange rates. For GBPUSD the Flexible Threshold-GARCH and

Spline-GARCH specifications perform approximately equally well when evaluated on ba-

sis of the QLIKE loss function and the log-predictive score. Flexible Threshold-GARCH

displays lower Mean Square Errors (MSEs) than Spline-GARCH, but the latter has higher

optimal pool weight. In view of that, one could use both specifications to predict GB-

PUSD volatility on a model averaging basis. Under all criteria the two specifications

that use information from news announcements provide better forecasts compared to a

typical GARCH(1,1) specification for all three exchange rates. These differences in the

forecasting performance based on MSE and QLIKE among specifications do not change

if we consider only announcement days or if we exclude the announcement days.
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Table 5: Forecast errors, log-predictive scores and optimal pool weights. Bold denote the specification

that provides better forecasts under the respective criterion; results based on ‘empirical Bayes’ estimators;

‘Bloomberg consensus’ estimators in brackets (see Section 4.3).

Model Flexible Threshold-GARCH Spline-GARCH GARCH

EURUSD

In-the-sample errors based on squared residuals

MSE (×10−10) 49.5646 51.2658 51.7309

QLIKE -9.2718 -9.2330 -9.2214

Out-of-sample errors based on squared residuals

MSE (×10−10) 10.7935 [10.8402] 10.9648 [10.9693] 11.0077

QLIKE -9.7958 [-9.7908] -9.7759 [-9.7755] -9.7724

Out-of-sample errors based on realized volatility

MSE (×10−10) 1.9276 [1.9330] 2.1548 [2.1613] 2.1743

QLIKE -9.5981 [-9.5958] -9.5843 [-9.5835] -9.5839

Out-of-sample log-predictive score

LS (×103) 1.0385 [1.0379] 1.0359 [1.0358] 1.0355

Out-of-sample optimal pool weights

w∗

i 1.0000 0.0000 0.0000

GBPUSD

In-the-sample errors based on squared residuals

MSE (×10−10) 44.8740 45.8647 46.0003

QLIKE -9.4958 -9.4660 -9.4519

Out-of-sample errors based on squared residuals

MSE (×10−10) 12.2226 [12.2605] 12.2693 [12.2563] 12.3659

QLIKE -9.7226 [-9.7199] -9.7230 [-9.7241] -9.7142

Out-of-sample errors based on realized volatility

MSE (×10−10) 1.5697 [1.5774] 1.5739 [1.5709] 1.6054

QLIKE -9.6897 [-9.6885] -9.6897 [-9.6900] -9.6874

Out-of-sample log-predictive score

LS (×103) 1.0290 [1.0286] 1.0290 [1.0291] 1.0278

Out-of-sample optimal pool weights

w∗

i 0.3479 0.5461 0.1060

USDCHF

In-the-sample errors based on squared residuals

MSE (×10−10) 314.3459 341.6850 346.6429

QLIKE -9.1037 -9.0463 -9.0308

Out-of-sample errors based on squared residuals

MSE (×10−10) 18.9276 [19.0211] 19.0142 [19.0284] 19.0126

QLIKE -9.4724 [-9.4682] -9.4655 [-9.4651] -9.4640

Out-of-sample errors based on realized volatility

MSE (×10−10) 4.8349 [4.8923] 4.9494 [4.9245] 5.0590

QLIKE -9.2579 [-9.2521] -9.2536 [-9.2533] -9.2502

Out-of-sample log-predictive score

LS (×103) 0.9963 [0.9957] 0.9954 [0.9954] 0.9952

Out-of-sample optimal pool weights

w∗

i 1.0000 0.0000 0.0000
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Figure 4: Posterior means of decay rates rij against announcement surprises threshold points, under the

first best model of the Flexible Threshold-GARCH specification for the EURUSD exchange rate.

5.3. MCMC diagnostics and sensitivity analysis

Table 6 presents the associated acceptance rates and CPU time required under each

specification for all exchange rates. As expected, the two auxiliary tempered chains

display higher addition, deletion and replacement acceptance rates. The calibration of

the temperature ladder seems to work well since the exchange move is accepted about half

of the times. Finally, the adaptive MCMC works rather well with acceptance rates close

to the targeted 0.234 in all cases. Figure 7 presents posterior model probabilities and

associated traces for the Flexible Threshold-GARCH specification under all exchange

rates, indicating that the mixing of the MCMC chain was good, with models varying

between one and thirteen variables.

A proper Bayesian data analysis requires a sensitivity analysis on the effect of prior

densities to the posteriors. As reported in Section 4.1, this is achieved by increasing

the standard deviation of all parameter prior densities by factors of two, five and ten,

and inspecting the changes in the resulting posterior densities. Table 7 demonstrates
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Table 6: MCMC diagnostics

EURUSD GBPUSD USDCHF

Flexible Threshold-GARCH

CPU time (hours) 138.6 59.3 99.2

Acceptance rate 1st chain 2nd chain 3rd chain 1st chain 2nd chain 3rd chain 1st chain 2nd chain 3rd chain

Addition 0.0539 0.0676 0.0879 0.0513 0.0665 0.0794 0.0478 0.0576 0.0720

Deletion 0.0522 0.0700 0.0877 0.0505 0.0656 0.0809 0.0466 0.0589 0.0710

Replacement 0.0059 0.0096 0.0160 0.0048 0.0083 0.0115 0.0042 0.0061 0.0099

Split 0.4114 0.3990 0.3943 0.4851 0.4933 0.5097 0.4398 0.4411 0.4367

Merge 0.4186 0.4070 0.4047 0.4819 0.4908 0.5023 0.4521 0.4546 0.4562

Update µm 0.2347 0.2350 0.2339 0.2326 0.2348 0.2341 0.2332 0.2326 0.2362

Update αm
1
, αm

2
0.2323 0.2338 0.2376 0.2345 0.2325 0.2346 0.2361 0.2340 0.2327

Update σm 0.2351 0.2357 0.2338 0.2338 0.2343 0.2301 0.2348 0.2340 0.2329

Update smi 0.2351 0.2309 0.2343 0.2350 0.2327 0.2278 0.2313 0.2336 0.2332

Update γm
ij 0.2339 0.2347 0.2324 0.2371 0.2283 0.2320 0.2341 0.2333 0.2342

Update rmij 0.2367 0.2354 0.2344 0.2311 0.2349 0.2282 0.2302 0.2354 0.2232

Exchange 0.5054 0.5116 0.5031

Crossover 0.1798 0.2068 0.1232

Spline-GARCH

CPU time (hours) 132.6 133.9 128.6

Acceptance rate 1st chain 2nd chain 3rd chain 1st chain 2nd chain 3rd chain 1st chain 2nd chain 3rd chain

Addition 0.0360 0.0533 0.0682 0.0326 0.0471 0.0653 0.0342 0.0467 0.0595

Deletion 0.0371 0.0554 0.0900 0.0327 0.0497 0.0724 0.0344 0.0526 0.0815

Replacement 0.0036 0.0076 0.0146 0.0025 0.0043 0.0094 0.0034 0.0063 0.0118

Update µm 0.2349 0.2353 0.2330 0.2336 0.2341 0.2346 0.2355 0.2355 0.2336

Update αm
1
, αm

2
0.2314 0.2332 0.2332 0.2312 0.2319 0.2334 0.2333 0.2316 0.2363

Update σm 0.2330 0.2333 0.2331 0.2344 0.2346 0.2332 0.2345 0.2339 0.2358

Update wm
0

0.2339 0.2359 0.2347 0.2320 0.2341 0.2349 0.2378 0.2314 0.2352

Update wm
i 0.2356 0.2336 0.2307 0.2337 0.2334 0.2402 0.2364 0.2318 0.2382

Update γm
i 0.2331 0.2333 0.2370 0.2353 0.2353 0.2302 0.2320 0.2430 0.2311

Update smi 0.2362 0.2321 0.2364 0.2321 0.2354 0.2341 0.2348 0.2330 0.2338

Exchange 0.4964 0.4936 0.5099

Crossover 0.2751 0.2991 0.2300

Note: Results based on a single run on the full sample. All algorithms ran for 100.000 iterations with 10.000 iterations burn-in on

an Intel Corei7 CPU. For the out-of-sample forecasts we ran the algorithms 12 times on a rolling window basis (see Section 4.3).
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Figure 5: Estimated EURUSD volatilities in-the-sample and out-of-sample. Solid: volatility estimates

(empirical Bayes estimator), dotted: squared residuals (left panel) and realized volatility (right panel)

that in the Flexible Threshold-GARCH specification, only marginal changes occur in the

associated forecast errors. Moreover, the out-of-sample volatility forecasts remain almost

identical under the two extreme prior specifications, see Figure 9. Similar results hold

for the Spline-GARCH specification. In Table 7 we also report results based on varying

MCMC samples that provide evidence that convergence has been achieved with sample

size 100, 000. Plots of volatility forecasts (not reported here) illustrate that the forecasts

are visually identical between 5, 000 and 100, 000 MCMC sample sizes.

6. Conclusions

We presented a new class of flexible threshold models for predicting volatilities of

exchange rates that incorporate information from scheduled news announcements. For

the dataset analysed, we have found strong evidence that suggests the use of such extra

information can enrich the GARCH structures commonly used.
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Figure 6: Out-of-sample volatility estimates under the Flexible Threshold GARCH specification for the

three exchange rates. Solid: volatility estimates based on ‘empirical Bayes’ estimator, dashed: volatility

estimates based on ‘Bloomberg consensus’ estimator, dotted: realized volatility

The use of our proposed threshold model is intuitively appealing, although it may

suffer from the usual problem of over-fitting. For this purpose, we have advocated the

use of model averaging prediction that exploits modern MCMC strategies that sample

in a transdimensional space. Our detailed empirical analysis provided evidence that our

model predicts rather well when compared with conditional volatility models and other

nonparametric formulations such as splines.

Our statistical framework can be easily extended to the multivariate case, where

given the variance estimates, once can employ a Dynamic Conditional Correlation (Engle,

2002) or a Cholesky-type parametrization (Dellaportas & Pourahmadi, 2012) to obtain

covariance estimates; see Petralias (2010) for illustrations of such multivariate extensions.
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Figure 7: Estimated posterior probability for the number of variables in the model under the Flexible

Threshold GARCH specification (left panel) and the number of variables across iterations (right panel).
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Appendix: The Population Reversible Jump algorithm

Reversible jump Algorithm

For parameters θm associated with model m ∈ M , the goal is to sample from the

posterior distribution

f(θm,m | D) ∝ f(D | θm,m)f(θm | m)f(m),

where D represents the data based on T time points, f(D | θm) is the likelihood of model

m, and f(θm | m) is the prior density of the parameters θm conditional on model m. The

likelihood based on model (2)-(5) is

f(D | θm,m) = (2πσ2)−T/2 |V |−1/2 exp

(
−
ε
′V −1

ε

2σ2

)
,

where ε = (ε1, . . . εT )
′ and V is a diagonal matrix with elements GtHt. The specification

of the priors is given in Section 4.1, while the general structure of the algorithm can be

found in Section 4.2.

Assume that at the current state (θm,m) of the Markov chain there exist Km index

variables. We select an addition, deletion or replacement move with probabilities q+m, q
−
m

and q0m respectively. We used equal probabilities taking care to change them accordingly

when there are zero (Km = 0) or the maximum number of variables (Km = Kmax) in the

current model m, with Kmax = 15 in the empirical application.

The addition move proceeds as follows. First we propose to move to model m′ by

adding an index variable not present in the current model m chosen with probability

j(m,m′) =
1

(Kmax −Km)
q+m.

The proposed parameters θ′m′ = (cij, gij , ρij, ςi) are sampled from the proposal density

q(θ′m′ | θm,m,m′) which is taken to be equal to the prior distribution f(θ′m′ | m′) defined

in Section 4.1. The deletion move proceeds in a similar way, where in the replacement

move we select one variable present at the current model to be replaced with one not

present with probability

j(m,m′) =
1

Km(Kmax −Km)
q0m.

In all cases the proposed move to (θ′m′ ,m′) is accepted with probability

α = min

(
1,

f(D | θ′m′ ,m′)f(θ′m′ | m′)f(m′)j(m′,m)

f(D | θm,m)f(θm | m)f(m)q(θ′m′ | θm,m,m′)j(m,m′)

)
.
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In the split move, for every i we propose to increase the number of threshold points

cij by one with uniform probability

q(c′ij | cij) =
1

Jmax
i − Jm

i

,

where Jmax
i the total number of possible threshold points, taken equal to the number of

distinct observations of each variable Zit∗i
. To achieve better mixing of the Markov chain,

the parameters gij and ρij are drawn from a density that dependents on the values of the

current state of the chain. We draw u1 and u2 from the prior distributions of gij and ρij

respectively and set

ǵij = gi,j−1 + u1

´gi,j−1 = gi,j−1 − u1

ρ́ij = ρi,j−1 + u2

´ρi,j−1 = ρi,j−1 − u2.

The move is then accepted with probability

α = min

(
1,

f(D | θ′m′ ,m′)f(θ′m′ | m′)f(m′)q(cij | c
′
ij)q

M
c′ij

f(D | θm,m)f(θm | m)f(m)q(c′ij | cij)q(u1 | θm,m)q(u2 | θm,m)qScij
|J |2

)
,

where qScij , q
M
cij

are the probabilities to perform a split or merge move, which are set equal

(1/2) with appropriate changes when Jm
i = 1 or Jm

i = Jmax
i and the Jacobian term for

the gij parameters is

|J | =

∣∣∣∣∂( ´gi,j−1, ǵij)

∂(gi,j−1, u1)

∣∣∣∣ =
∣∣∣∣∣∣
1 −1

1 1

∣∣∣∣∣∣ = 2.

Since the same Jacobian is obtained for the ρij parameters, the term |J |2 is included

in the acceptance ratio. In the merge move we randomly select a threshold point to be

deleted taking care so that the first threshold point (j = 1) is always included in cij.

Then we set the new parameters as

gi,j−1 = (ǵij + ´gi,j−1)/2

ρi,j−1 = (ρ́ij + ´ρi,j−1)/2.

When performing random walk metropolis to update {µ, σ, α1, α2, gij , ςi, ρij}, we found

useful to apply adaptive Metropolis methods, enforcing the diminishing adaptive condi-

tion which ensures asymptotic convergence and ergodicity and the bounded convergence

condition so that the convergence time of the kernel is bounded in probability, as de-

scribed in Roberts & Rosenthal (2009). To this respect the scale of the proposal for each
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parameter (denoted as τi for a parameter i) is adaptively updated as follows: Given a

starting value for the proposal scale (acquired through a pilot run), set a global maximum

(and minimum) bound, M = max(τi) (in our case we set M = 10e+5 for all parameters),

so that − log(M) ≤ log(τi) ≤ log(M). Then every b batches of 50 swaps add (subtract) to

the logarithm of the proposal scale a quantity, log(τi) + δ(b), where δ(b) = min(b0, b
−1/2)

and b0 = 0.1, if the acceptance rate is higher (lower) than 0.234. The necessary condition

Ht > 0 resulted to less than 5% rejection of the proposed values of gij, ςi and ρij.

Population Algorithm

In the exchange move we randomly select two adjacent, in terms of temperature,

chains, and propose to swap their values. Denote with x� the state (m�, θ
�
m�
) of chain �,

with target distribution π�(x�) and π� ∝ πζ� (see Section 4.2). The Metropolis-Hastings

acceptance ratio used to swap the states of chains 1 and 2 is of the form

α = min

(
1,

π1(x2)π2(x1)

π1(x1)π2(x2)

)
.

We choose not to temper the prior distributions, thus they cancel out in the acceptance

ratio.

The crossover move takes a fraction of the variables, along with their associated pa-

rameters present in the current chain and places them in another randomly selected chain.

This move proceeds as follows. Select two random chains (not necessarily adjacent), say

1 and 2, with probability τ1 and τ2|1 respectively. Then

if both chains have the same variables reject the move, else:

- draw a discrete uniform random variable u ∼ DU(1, . . . , v), where v is the number

of variables in chain 1 not included in chain 2.

- delete randomly u variables with their associated parameters from chain 1.

- add the u variables with their associated parameters to chain 2.

- accept the new state with probability

α = min

(
1,

π1(x
′
1)π2(x

′
2)q(x1, x2 | x

′
1, x

′
2)

π1(x1)π2(x2)q(x′
1, x

′
2 | x1, x2)

)
,

where q(x′
1, x

′
2 | x1, x2) = q(u | v)τ1τ2|1, is the proposal density of the new states, q(u | v)

the uniform probability to select u from v available variables i, τ1 is the probability to

select chain 1 and τ2|1 is the probability to select chain 2 given we have selected chain 1.
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The term τ1τ2|1 cancels out in the acceptance ratio since these probabilities are set to be

uniform.

The algorithm is coded in Matlab and is available from the first author upon request.

33


